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Abstract

We report on the design and verification of a highly performant,
device-to-device messaging protocol offering strong security guarantees
even against an adversary with quantum computing capabilities, called
iMessage PQ3. The protocol leverages Apple’s identity services together
with a custom, post-quantum secure initialization phase and afterwards
it employs constructs from a double ratchet in the style of Signal,
extended to provide post-quantum, post-compromise security. We
present a detailed formal model of the protocol, a precise specification
of its fine-grained security properties, and machine-checked proofs using
the Tamarin prover. Particularly novel are the integration of post-
quantum secure key encapsulation into the relevant protocol phases and
the detailed security claims along with their complete formal analysis,
covering both key ratchets, including unbounded loops.

1 Introduction

Research on secure instant messaging goes back over two decades, with
early proposals including Off-the-Record Messaging, the Silent Circle In-
stant Messaging Protocol, iMessage, and Signal. Over time, the security
community’s understanding of the threat models and security claims for
secure messaging evolved. Modern messaging protocols now offer very strong
guarantees and can communicate messages secretly even in the presence of
adversaries who can compromise different parties in different ways during
the protocol’s execution. This is befitting given that strong adversaries,
like nation states, are capable of compromising both messaging servers and
the end points sending and receiving messages, or compelling their release
of information. More recently, security against adversaries with quantum
computing capabilities has also become an important concern. This requires
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protection against adversaries who can “harvest now and decrypt later” by
storing the encrypted data they intercept and decrypting it in the future
when quantum computers become sufficiently powerful.

In this paper, we present and analyze an advanced secure messaging
protocol, the iMessage PQ3 Messaging Protocol (PQ3). This protocol is a
device-to-device protocol that will be used in production across all of Apple’s
devices for device-to-device messaging using Apple’s Identity Services, which
in turn underlies many other Apple services including iMessage, FaceTime,
HomeKit, and HomePod hand-off. The protocol is designed to be performant
and to offer strong guarantees against powerful adversaries, including those
that may possess quantum computers in the future. Roughly speaking,
the protocol employs a custom post-quantum secure initialization phase
followed by elements of a double-ratchet construction, similar to that used
by Signal [4]. Both phases combine classical cryptographic primitives, like
elliptic curve Diffie-Hellman, and post-quantum primitives, namely Kyber, a
module-lattice-based key-encapsulation mechanism.

We have carried out a detailed analysis of PQ3’s design using the Tamarin
prover [3,5], a state-of-the art security protocol model checker. We report here
on our model of this protocol, the adversary assumptions, and the protocol’s
desired properties. In more detail, we use Tamarin’s expressive specification
language to specify the messaging protocol and its use of both classical
and post-quantum cryptography. We also specify all forms of adversary
compromise; essentially the adversary can compromise any key at any time.
We also use Tamarin’s property language to formalize and prove fine-grained
secrecy and authenticity theorems. These theorems express the protocol’s
security, under precise, fine-grained conditions capturing many desirable
security guarantees.

Our analysis establishes that PQ3 provides strong security guarantees
against an active network adversary that can compromise all secret keys
unless explicitly stated otherwise. For example, PQ3 provides forward
secrecy, post-compromise security, and post-quantum security with respect
to a harvest now, decrypt later adversary. Notably, and in contrast to Signal,
PQ3 provides post-compromise security also against active adversaries and
not only against passive adversaries.

Contributions. Our main contributions are twofold. First, we formalize
PQ3’s security guarantees and use Tamarin to provide formal, machine-
checked proofs that PQ3 offers strong security guarantees against a powerful
adversary with quantum computing capabilities. PQ3 thereby meets the
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expectations of a modern device-to-device messaging system. This high
assurance is important given the prominent role of this protocol, which will
be used on billions of devices worldwide.

Second, we show that symbolic security protocol model checkers, in
particular Tamarin, can handle substantial, real-world protocols with nested
loops, in their full complexity. This is nontrivial as it entails reasoning
about unboundedly many instances of the protocol running in parallel, where
the runs themselves are unbounded. In fact, it was commonly believed
that “unbounded (looping) protocols like Signal, and protocols with mutable
recursive data structures [...] are also out of scope for symbolic provers,
without introducing artificial restrictions [2].” Our verification shows that
this is not the case.

Organization. We begin by covering PQ3’s requirements and threat model
in Section 2. Afterwards, in Section 3 we describe the PQ3 Messaging
Protocol. In Section 4 we describe our Tamarin model of the protocol as
well as the adversary model, protocol properties, and some details on our
proofs. In Section 5 we draw conclusions.

2 Threat Model and Protocol Requirements

2.1 Security Requirements

The two central security properties for PQ3 concern message secrecy and
authenticity.

Secrecy. PQ3 was designed to provide strong secrecy guarantees, namely
message secrecy, forward secrecy, and post-compromise security (also some-
times called self-healing or backward secrecy). Message secrecy means that as
long as neither participants’ session states are revealed, the adversary cannot
learn any of their exchanged messages. Forward secrecy protects protocol par-
ticipants against the future compromise of past sessions, e.g., the loss of a long-
term secret later should not jeopardize the secrecy of previously exchanged
messages. Post-compromise security helps to recover or “self heal” from a
past compromise to communicate secretly again in the present and future.

We deliberately describe PQ3’s secrecy guarantees first at a high level and
note that PQ3 provides much finer grained notions of secrecy. In our security
analysis of PQ3, we define a secrecy lemma that captures all three notions
of secrecy and that considers the precise implications of partial session state
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compromise. Describing this fine-grained secrecy lemma though requires a de-
tailed understanding of the key material used in PQ3, and is thus left for later.

Authentication. A message recipient can identify the message’s sender.
We can formulate this as an agreement property : the recipient’s view of the
message (including the identify of its peer, the sender), agree with the peer’s
view. This means that for any message received, allegedly originating from
the peer at message counter i, that the peer has actually sent the message
using counter i, and intending it to go to the receiver.

Replay Protection. While secrecy and agreement prevent an adversary
from learning the contents of messages and faking a message’s sender, they
might still be able to trick a recipient into accepting an honestly sent message
multiple times. PQ3 aims to provide cryptographic replay protection, which
prevents such attacks.

2.2 Threat Model

PQ3 seeks to provide all of the above security properties against a strong
active network adversary who will have access to a powerful quantum com-
puter in the future. As an active network adversary, the adversary can
read, reorder, intercept, replay, and send any message to any participant.
As is standard in the symbolic setting, we assume that devices use strong
randomness and that the adversary cannot, in general, factor large num-
bers or compute discrete logs and therefore cryptographic primitives like
(elliptic curve) Diffie-Hellman are secure against this adversary. They can
only decrypt ciphertexts if they possesses the corresponding secret keys. An
exception to this are the adversary’s quantum computing capabilities, which
we describe next.

We assume that the adversary does not yet possess a quantum computer.
The adversary anticipates developments in quantum computing and thus
stores all messages sent. Therefore, they may be able break cryptographic
primitives later, should sufficiently powerful quantum computers become
available (also called “harvest now, decrypt later”). The only limitation we
place on this adversary is that they cannot decapsulate secrets that were
encapsulated with a post-quantum secure KEM like Kyber. But all other
mechanisms, like (elliptic-curve) Diffie-Hellman, can be broken at that point.

The adversary can additionally, however, compromise any key at any
time; hence our security properties must account for this. When we analyze
our fine-grained security properties, we will consider the compromise of secret
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keys individually. This reflects that some keys may be in main memory and
relatively easy to compromise, whereas others may be stored in the Apple
Secure Enclave and are thus much harder to compromise.

Finally, we assume that PQ3’s key directory, Apple’s IDentity Services
(IDS), is secure in that it only distributes authentic keys. The problem of
key authentication is orthogonal to PQ3 and has recently been addressed by
Apple with their plans for “Contact Key Verification” [1].

3 PQ3 Messaging Protocol

PQ3 is a device-to-device messaging protocol where either device can asyn-
chronously exchange messages at any time, independent of the connection
status of their peer’s clients. For setup and session establishment, the proto-
col leverages the IDS key directory. We first describe PQ3 at a high-level of
abstraction, followed by a more detailed, lower-level account. At the end of
this section, we describe two additional performance-related design aspects
of PQ3.

3.1 A High-level Account

If Alice wants to initiate messaging with Bob, she and Bob proceed as follows.

1. Alice queries the IDS to obtain pre-key material and a long-term
identity public key for Bob.

2. Alice derives an initial root key and message key. Alice encrypts her
first message for Bob using this message key and sends the ciphertext
alongside a signature and the key material necessary to derive the
initial root key to Bob.

3. Upon receiving this new message, Bob lacks the key to decrypt the
ciphertext, so he must derive this. Bob first queries the IDS to verify
Alice’s long-term identity public key and checks the received signature.
He then uses the key material just received to derive the initial root
and message keys and decrypts the initial message. Alice and Bob have
now established a shared session.

4. As long as the session does not change direction (i.e., the current sender
keeps sending messages; initially, this will be Alice sending messages to
Bob), both parties perform symmetric ratcheting to derive new message
keys.
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Figure 1: Sources of entropy for PQ3 root key derivation.

5. Whenever the session changes direction (i.e., the current receiver wants
to reply; initially this will be Bob sending his first response to Alice)
both parties perform a public key ratchet.

Note that at this high level of abstraction, Steps 2–5 resemble the standard
double-ratchet construction. But there are significant differences in the
concrete details on how the ratchets are performed, in particular how a
post-quantum KEM is integrated into the ratcheting.

3.2 A More Detailed Account

We now explain PQ3 in more detail. This covers the keys used, how the root
key is derived, how the session key is initially established, and how both
the symmetric and the public key ratchets work. Although this account is
more detailed than the previous one, we still focus on the essential ideas and
we omit some low-level details concerning message and key derivation tags.
Moreover, we describe some additional features of PQ3 at the end of this
section.

PQ3 Keys Root keys are derived using three sources of entropy: (1) The
previous root key, (2) an optional KEM shared secret, and (3) a shared
ECDH secret. As usual, the ECDH shared secret is computed by combining
the messaging partner’s public key and one’s own private key. Figure 1
illustrates the root key derivation. Furthermore, PQ3 messages are signed
with the sender’s long-term identity private key for authentication purposes.
This necessitates that agents use three types of key pairs when running PQ3:

Long-term Identity Keys A P-256 ECDSA public/private key pair used
for signatures for message authentication.

ECDH Keys A P-256 ECDH public/private key pair used to establish
shared secrets.
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KEM Keys A Kyber 768 or 1024 public/private key pair used to establish
shared post-quantum-secure secrets.

To support asynchronous messaging, the agents control two types of
ECDH and KEM keys. First, they upload ECDH and KEM pre-keys in
timestamped pre-key bundles to the IDS. They sign these bundles with their
long-term identity private key. The pre-keys enable agents to start new
sessions without contacting their messaging partner first and are only used
at the start of each session. Second, they control session-specific ephemeral
versions of these keys. Participants will use Kyber 1024 keys for their KEM
pre-keys and Kyber 768 keys for their ephemeral KEM keys.

Session Establishment In the following, we assume, as before, that Alice
wishes to establish a new session with Bob. We depict an example run of
PQ3, specifically showing the key derivations of both parties, in Figure 2.
Alice initiates her session with Bob by first performing an IDS query with
Bob’s identity. Alice thereby learns three keys from the query’s result: Bob’s
long-term identity public key, a ECDH public pre-key, and a KEM public pre-
key; this is depicted within the white box in Figure 2, however that diagram
omits showing the identity key as it is not used in any key derivations. Alice
then generates a fresh ECDH ephemeral public/private key pair and samples
a fresh KEM shared secret. Alice combines her ECDH ephemeral private key
with Bob’s ECDH public pre-key to obtain the initial ECDH shared secret,
and she encapsulates the KEM shared secret she sampled with Bob’s KEM
public pre-key.

Alice now proceeds to derive the initial root key (and the associated
initial chain key) from a zero-byte sequence, which stands in for the previous
root key, together with the ECDH shared secret and the KEM shared secret,
visible on the far left of Figure 2 in Step 1. She uses the initial chain key
to derive a message key, which she uses to encrypt her initial message. She
then sends Bob the following: The ciphertext, her ECDH ephemeral public
key, the KEM encapsulation (with the latter two seen in Figure 2), a hash of
Bob’s pre-keys used (called the pre-key hash), and her signature on all of
the above.

Bob can use that message to derive his view on the initial root key and
associated chain key as follows. Bob first performs an IDS query to receive
Alice’s long-term identity public key (not depicted in Figure 2), which he
uses to verify the message signature. The following steps are illustrated in
the block numbered 1 in Figure 2. Bob then looks up the private parts of
his pre-keys used by Alice using the pre-key hash. Bob decapsulates the
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KEM encapsulation to obtain the KEM shared secret, and combines Alice’s
ECDH public ephemeral key with his ECDH private pre-key to establish the
ECDH shared secret. With these two values (and the zero-byte sequence),
Bob can now compute the initial root key and associated chain key, and
derive a message key from that chain key, and decrypt the ciphertext.

Symmetric Ratchet With a shared root key established, Alice can send
any number of additional messages to Bob without the participants updating
the root key. Nevertheless, each of these messages will be encrypted with a
distinct key that is derived by symmetric ratcheting. Whenever participants
establish a new root key, they first derive an initial chain key in that root key
derivation. Whenever a participant encrypts a message, they use the current
chain key to derive a message key, and then ratchet the chain key forward
by deriving a new chain key from the previous chain key. PQ3 establishes
per-message forward secrecy as soon as the previous chain and message keys
are deleted, i.e., participants should only store the latest root and chain key.
The symmetric ratchet, though, is only executed as long as the conversation’s
direction does not change, i.e., as long as the current sender keeps sending.
Whenever the current receiver wishes to send a message, a public key ratchet
is performed instead, which we describe next.

Public Key Ratchet Suppose that, after receiving some messages from
Alice, that Bob wants to reply. To do so, Bob first generates a fresh ECDH
ephemeral public/private key pair. Depending on the conversation’s state,
Bob may additionally perform one of two actions:

(i) sample and encapsulate a new KEM shared secret, or

(ii) generate a new KEM ephemeral public/private key pair.

Action (i) is performed whenever Bob’s peer, Alice, performed Action (ii) in
the previous public key ratchet. Action (ii) need not always be performed
and its application is determined by a custom heuristic. To save bandwidth,
PQ3 does not require that KEM keys are refreshed with every public key
ratchet.

Bob then derives the next root key and associated initial chain key. He
first combines his freshly generated ECDH ephemeral private key with Alice’s
most recent ECDH ephemeral public key to obtain the new ECDH shared
secret. He then uses the previous root key, the new ECDH shared secret, and
either the new KEM shared secret or a zero-byte sequence (depending on
whether Bob performed Action (i)) to derive the next root key and associated

8



Figure 2: Illustration of PQ3’s root key derivation. Alice initiates a session
with Bob and initially uses pre-key material to derive a root key. Alice sends
a freshly encapsulated shared KEM secret, and a freshly sampled ECDH
public key to Bob that Bob can later use to derive session keys when he
becomes active. New KEM shared secrets are only sampled and shared when
the other participant sent a new KEM public key in the previous public key
ratchet. Orange/gray key pairs denote Kyber KEM keys, and green/blue
key pairs denote ECDH keys. The design of this figure was inspired by [4].
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initial chain key. He again derives a message key from that chain key to
encrypt his message and sends Alice the following values: the ciphertext, his
fresh ECDH ephemeral public key, optionally the new KEM encapsulation
(Action (i)), optionally his new KEM public key (Action (ii)), and a signature
on all of the above.

Figure 2 depicts examples of public key ratcheting in Steps 2–4. In Step 3,
Alice decides to generate a new ephemeral KEM public/private key pair and
sends the corresponding public key to Bob, i.e., Alice executes Action (ii)
above. This means that Bob will execute Action (i) in Step 4 of Figure 2.

3.3 Other Features of PQ3

PQ3 includes an implementation optimization and a fault tolerance mecha-
nism that we omitted in our discussion for the sake of brevity and readability.
First, whenever a participant switches from being the sender to being the
receiver, they immediately perform both the public key ratchet to become
receiver now and to become sender later. This is possible because when
becoming receiver, the participant already has all information from their peer
necessary for the public key ratchet step to become sender later. The receiver
only needs to sample a fresh ephemeral ECDH private key in advance, store
it, and send it to their peer when they later become the sender.

Second, for robustness, e.g., to tolerate out-of-order delivered messages,
PQ3 clients maintain multiple so-called incoming chains. Should a client
receive a message that skips a message counter, it saves the session state
of the skipped counter in such an incoming chain. PQ3 allows receiving
messages on the three most recent incoming chains, dropping the oldest
whenever a client exceeds the limit.

Finally, we note that PQ3 requires clients to rotate their pre-keys stored
on the IDS roughly every two weeks.

4 Tamarin Model

Tamarin is a state-of-the-art security protocol analysis tool, described in
detail in [3,5]. Here we just provide a high-level overview. We highlight that
Tamarin works in the symbolic model of cryptography, where cryptographic
primitives are assumed perfect, as previously stated. This allows Tamarin to
be highly automated and to mechanically check all proofs.
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4.1 Background on Tamarin

Tamarin uses labeled multiset rewriting rules to model the behavior of
protocol participants. The participants play in so-called roles, where the
possible actions of each role is given by sets of rules. Tamarin verifies security
properties against an active network adversary who can read, intercept,
reorder, replay, and send any message. In addition to this built-in adversary,
modelers can give the adversary additional capabilities using explicit rules.
Furthermore, setup assumptions can also be modeled with further rules.

Each rule consists of a premise and conclusion. These are made up of
(potentially persistent) facts, which store the terms that the symbolic model
reasons about. The state of the analysis of a protocol in Tamarin includes
the states of all roles, the adversary knowledge, all exchanged messages,
and more. To apply a rule, the facts in its premise must be found in the
current state. When a rule is applied, all non-persistent facts appearing in
the premise of this rule are removed from the state and replaced by instances
of the facts in the conclusion of this rule.

To model different cryptographic primitives, Tamarin supports a number
of built-in equational theories. These theories contain the necessary identities,
to, e.g., allow the decryption of an encrypted message with the appropriate
key. The user can additionally define their own equational theories under
some technical conditions.

4.2 Protocol Model

We used Tamarin to comprehensively model PQ3, and an overview of our
model is depicted in Figure 3. Our formal model centers around Session

facts, which store all information necessary to send and receive messages.
For example, a Session fact stores a participant’s most recently generated
ECDH and KEM private key and the corresponding public keys of their peer,
as well as any derived root, message, and chain keys.

Our formal model has three parts. The first part models the generation
of long-term signing keys and pre-keys (rule UserKeyGen), and IDS queries
(rule QueryIDS). These are setup rules, which are the same for all participants,
independent of whether they start as sender or receiver initially. The second
part is the model of PQ3 itself, which we describe shortly. The third part
models the adversary capabilities. We allow the adversary to compromise
every private key through dedicated reveal-rules unless our security lemmas
explicitly forbid a certain key to be revealed. Additionally, we model the
harvest now, decrypt later adversary as follows. Whenever participants
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Figure 3: Overview of our formal model. Rectangles denote rules and ellipses
denote facts, with their respective name printed inside. Arrows denote fact
consumption and generation or rule transition. White rectangles denote
a branch of two rules. The rule PQAttackerStart can be applied at any point.
When this happens, protocol execution halts (modelling a harvest now,
decrypt later adversary) and from then on the rule PQAttacker can be applied
which reveals any non-post-quantum-secure secret to the adversary. Note
that this figure names all multiset-rewriting rules used in our formal model.
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generate a non-post-quantum-secure key, e.g., a fresh ephemeral ECDH
private key, our model saves these keys in persistent facts (i.e., facts that are
not consumed upon use in a rule’s premise). The adversary can access any
secrets stored this way after the rule PQAttackerStart was applied, but from
that point on, no honest participant runs PQ3.

The model of PQ3’s core is depicted in the center of Figure 3. The left-
hand side shows all sender-related rule names and the right-hand all receiver
related rule names. There are two rules to start a session as sender or receiver
respectively (SessionStartAsSender/ReceiverStart). These are the only two
rules that generate a new Session fact, and are only applied once per session.
All other rules may be applied multiple times per session. After a new session
has started, there are two options. Either, the conversation does not change
direction, then both participants will apply the symmetric ratchet rules
(SendSymmetricRatchet/ReceiveSymmetricRatchet), or the conversation changes
direction and the public key ratchet rules are applied.

When a participant becomes the sender (after being the receiver), they
first check whether a new KEM public key was sent in the previous public key
ratchet and they afterwards generate a new KEM shared secret accordingly
(SomeNewKemPk/NoNewKemPk). Then, they non-deterministically decide whether
they want to generate a fresh KEM private key and send the corresponding
public key (FreshKemSk/OldKemSk). Finally, they perform the public key ratchet
and send the next message (PKRatchetNewSender).

When one becomes the receiver, one of two rules apply. In both rules,
the change to receiver is triggered by receiving a new message while being in
the sender state, which makes the participant perform the public key ratchet.
In one of the two rules, they do so using a decapsulated KEM shared secret
(PKRatchetNewReceiverSomeNewKemSS), and in the other rule they use a zero-bytes
sequence instead (PKRatchetNewReceiverNoNewKemSS). Unlike our modelling of
branches on the sender’s side, we duplicate the public key ratchet rule for
the receiver to simplify proofs. Note that the new receiver might receive a
new KEM public key as well. However, they will only branch on this when
they become sender again.

At a high level, one can consider our model as implementing two nested
loops. First, there is the public key ratchet loop in which participants
generate new ephemeral ECDH secret keys and generate new root keys.
Second, there is the symmetric ratchet loop in which participants use a fixed
root key to send multiple messages. The symmetric ratchet loop always runs
within one public key ratchet loop step. To complete our description of the
formal model, Figure 4 provides an example of a multiset-rewriting rule.
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rule SessionStartAsASender:

let dst = <$Me , pk(~ idKey), $Them , peerIdPk >

ecdhSS = peerEcdhPk ^~ ecdhSk

kemEncap = encap (~kemSS , peerKemPk)

rkCK = hkdf(hkdf(hkdf(ecdhSS , ’0’), ~kemSS), dst)

chainKey = suffix(rkCK)

preKeyHash = h(<peerEcdhPk , peerKemPk , preKeySig >)

msgKey = hkdf(chainKey , ’msg_key ’)

msgKeyInd = hkdf(msgKey , ’msg_key_ind ’)

nextChainKey = hkdf(chainKey , ’chain_key ’)

ciphertext = senc(~msg , msgKey)

body =

<’msg_sig ’, ciphertext , msgKeyInd , ’g’^~ ecdhSk , %1,

dst , None , Just(kemEncap), Just(preKeyHash)>

signature = sign(body , ~idKey)

in

[ Fr(~id)

, !IdentityKey($Me , ~idKey)

, !KemPreKey($Me , ~kyberSk)

, IDSQuery($Them , peerIdPk , peerEcdhPk , peerKemPk , preKeySig)

, Fr(~msg), Fr(~ ecdhSk), Fr(~kemSS) ]

--[ /* omitted */ ]->

[ Out(<ciphertext , signature , ’g’^~ecdhSk , %1, msgKeyInd ,

None , Just(kemEncap), Just(preKeyHash )>)

, Session (~id, %1, ’S’, $Me , ~ecdhSk , ~kyberSk , $Them ,
peerIdPk , peerEcdhPk , Just(peerKemPk), None , ~kemSS ,

peerKemPk , rkCK , chainKey)

, Out(’g’^~ ecdhSk)

, !NonPQSecKey (~ ecdhSk)

, !ECDHKey (~id, $Me , ~ecdhSk) ]

Figure 4: The Tamarin multiset-rewriting rule modelling the start of a new
session as sender. We omitted action facts (transition labels) for clarity. In
this rule, the sender receives their peer’s long-term identity and pre-keys
from the IDS (IDSQuery), looks up their own long-term identity and KEM
pre-key (!IdentityKey/KemPreKey), samples a fresh KEM shared secret and
ephemeral ECDH private key, and generates a session ID (Fr). They use these
values to send the first message to their peer (Out) and save the session state
(Session). Furthermore, they share their ephemeral ECDH public key with the
adversary, and flag the ephemeral ECDH private key as non-post-quantum
secure, as well as ECDH key to make it available to the adversary rules.
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functions: hkdf/2, suffix/1, h/1

functions: pqpk/1, encap/2, decap/2

equations: decap(encap(k, pqpk(sk)), sk) = k

functions: default/2, Just/1, None/0, unjust /1

equations: default(Just(v), t) = v,

default(None , v) = v,

unjust(Just(t)) = t

Figure 5: Custom functions and equations defined in our formal model.

4.2.1 Signature and Equations for Base Model

We use Tamarin’s built-in equational theories for signing, symmetric en-
cryption, and Diffie-Hellman. These respectively model digital signatures,
symmetric encryption under message keys, and ECDH key exchanges. We ad-
ditionally use Tamarin’s natural numbers theory to model message counters.

In addition to these built-in theories, we use some custom functions and
equations, shown in Figure 5. First, we use the functions hkdf and suffix for
key derivation. hkdf takes two arguments: the first is the source of entropy
and the second any tag or salt. The suffix function is used to derive an
initial chain key. Additionally, we use the unary function h to model the
pre-key hash, which is used during session establishment, see Section 3.

The functions pqpk, encap, and decap model KEM encapsulation and follow
the standard symbolic model for asymmetric encryption. Finally, we use
the wrapper function Just and the constant None to model optional values.
The function default (together with the accompanying equations) allows
unpacking an optional value or replacing it with a default, and unjust allows
the adversary to access the contents of any Just value they intercept.

4.3 Properties Specified

4.3.1 Secrecy

PQ3 aims to establish three secrecy properties: message secrecy, forward
secrecy, and post-compromise security. In this section, we will unify all these
notions in a single property statement. This is formulated as a formula,
called a lemma in Tamarin.

Security properties in Tamarin are often phrased as: “If some context
applies, then either good things happen or the threat model does not apply.”
For example, secrecy would usually be stated as: “If a participant sends
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All id sentI me them msg myECDHPk peerECDHPk encapPk #t.

( MessageSent(id , sentI , me , them , msg) @ #t

& SessionSecrets(myECDHPk , peerECDHPk , encapPk) @ #t)

==> (not Ex #x. K(msg) @ #x)

| (Ex #x. CompromisedIdentityKey(them) @ #x & #x < #t)

| ( ( (Ex #x. PQAttack () @ #x)

| (Ex #x. CompromisedECDHPreKey(them , peerECDHPk) @ #x)

| (Ex #x. CompromisedECDHKey(id , me , myECDHPk) @ #x)

| (Ex id2 #x.

CompromisedECDHKey(id2 , them , peerECDHPk) @ #x))

& ( (Ex #x. CompromisedKemKey(me , encapPk) @ #x)

| (Ex #x. CompromisedKemKey(them , encapPk) @ #x)

| (Ex #x. CompromisedKemPreKey(me , encapPk) @ #x)

| (Ex #x. CompromisedKemPreKey(them , encapPk) @ #x)))

Figure 6: Secrecy lemma.

a message, then either that message remains secret or the threat model
does not apply.” Typically, the threat model not applying means that the
adversary has done something that the specification does not aim to protect
against. Following this pattern, it might appear natural to phrase forward
secrecy and post-compromise security in the same way. However, we find it
much clearer to treat forward secrecy and post-compromise security as parts
of the property’s threat model instead of factoring them out.

Figure 6 contains our secrecy lemma. It states that the adversary must
have either compromised the recipients’ signing key in the past or compro-
mised one of the most recently sampled ECDH secrets and the most recently
sampled encapsulation key in order to learn a message. Both the most
recent ECDH secrets and the most recent encapsulation keys are referenced
in SessionSecrets. Note that the compromise of the most recently sampled
ECDH secret may occur due to direct compromise or due to a quantum
computing attack from a harvest now, decrypt later adversary. Proving this
statement establishes forward secrecy as we show that to learn past messages,
the adversary must know past keys. It also establishes post-compromise
security because to learn future messages, the adversary must compromise
future keys. In both cases, we show that the compromise of current secrets
is not enough to learn future or past messages.

Concretely, our lemma entails while the adversary does not possess a
quantum computer:

• Forward secrecy w.r.t. either peer’s long-term identity keys.
All messages exchanged before the compromise of the long-term private
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key associated with the public identity key (which is distributed via
secure IDS) of either party stay secret from the adversary.

• Forward secrecy and post-compromise security w.r.t. ECDH
ephemeral keys. For the compromise of either parties’ ECDH
ephemeral private keys, we have both forward secrecy, i.e., older mes-
sages are secret, and post-compromise security, i.e., as soon as a new
ECDH ephemeral key is used, future messages are again secret.

• Post-compromise security for ECDH pre-keys. Just like other
ECDH keys, if the initial receiver’s ECDH private pre-key was compro-
mised, messages that are exchanged after a new ECDH ephemeral key
is generated by the recipient, are secret.

Moreover, should the adversary at some point become able to break all
non-Kyber keys using quantum computers, PQ3 still provides:

• Post-quantum forward secrecy and post-compromise security
w.r.t. Kyber keys. Even if a Kyber private key is broken, all messages
before this Kyber private keys’ usage and all messages after another
Kyber private key was used (for encapsulation of a KEM shared secret)
remain secret.

In summary, the proof in Tamarin of our secrecy lemma establishes
that in the absence of the sender or recipient being compromised, all keys
and messages transmitted are secret. Moreover the secrecy property is fine-
grained in that compromises can be tolerated in a well-defined sense where
the effect of the compromise on the secrecy of data is limited in time and
effect as detailed above.

Additional Secrecy Properties. The previous lemma gives us very
strong secrecy guarantees. We conjecture though that PQ3 provides even
stronger secrecy properties than those established by our secrecy lemma.
Due to limitations of Tamarin, we do not have machine checked proofs yet;
we discuss this further in Section 4.4.

• Forward secrecy for ECDH pre-keys. PQ3 requires that partici-
pants update their pre-keys registered at the IDS every 2 weeks. As
soon as a client registers a new pre-key, they establish forward secrecy
for all previous session initialization messages sent to them.
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All id i s r m #t.

MessageReceived(id, i, s, r, m) @ #t

==> (Ex id_ #x. MessageSent(id_ , i, s, r, m) @ #x & #x < #t)

| (Ex #x. CompromisedIdentityKey(s) @ #x & #x < #t)

Figure 7: Agreement lemma.

• Forward secrecy w.r.t. chain keys. The compromise of a particular
such chain key does not impact the secrecy of any messages exchanged
prior to the compromise. Furthermore, see next point.

• Post-compromise security w.r.t. chain keys. Even if a particular
chain key has been compromised, after the next asymmetric ratchet
with the expected partner, future messages are again secret (assuming
no further explicit compromise). Only messages sent on this chain
before the next ratchet happens will be available to the adversary.

• Forward secrecy and post-compromise security w.r.t. message
keys. Similarly to chain keys, the compromise of a message key does
only impact the secrecy of the message that was encrypted with that
message key as every message key is derived from a distinct chain key.

Note that forward secrecy and post-compromise security with respect
to the chain and message keys also holds after the adversary has gained
access to a quantum computer since the chain and message keys depend on
KEM-encapsulated secrets.

4.3.2 Agreement

In contrast to secrecy, formalizing agreement is straight-forward and
adapts our definition from Section 2.1 directly. Our formalization of agree-
ment as a Tamarin lemma is provided in Figure 7. The lemma, proven in
Tamarin, states that whenever a participant r receives a message m, appar-
ently from s and with message counter i, then either s had previously sent m

to r with counter i or that senders’ long-term identity has been compromised
in the past.

Additional Agreement Properties. Recall that PQ3 also aims to pro-
vide replay protection. Replay protection is usually formalized as injective
agreement, where “injective” means that there is a one-to-one mapping from
receive-events to send-events. We formalized injective agreement as shown in
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All id1 id2 i1 i2 s1 s2 r1 r2 m #t1 #t2.

( MessageReceived(id1 , i1 , s1 , r1 , m) @ #t1

& MessageReceived(id2 , i2 , s2 , r2 , m) @ #t2)

==> ( ( (Ex id3 #x. MessageSent(id3 , i1 , s1 , r1 , m) @ #x)

| (Ex #x. CompromisedIdentityKey(s1) @ #x))

& ( (#t1 = #t2)

| (Ex #x. CompromisedIdentityKey(s2) @ #x)))

Figure 8: Injective agreement lemma.

Figure 8. Note that the formalization is close to our agreement property from
earlier, but we quantify over two receive events in the implication’s premise.
Next to stating that there must be a corresponding send-event for one of the
receive-events (as in agreement), the lemma requires that any two receive
events of the same message must be the same, unless the long-term identity
key of the second receive-event’s sender was compromised. Compromise of
one sender suffices to violate injective agreement because agreement does
not entail secrecy. The adversary could learn a message by compromising
the ECDH and KEM keys of the session. They could then send the message
again, which requires compromise of a long-term identity key, however, to
produce the necessary signature.

We were not able to prove injective agreement in Tamarin for the same
reasons as for the additional secrecy properties just discussed, and we will
explain these limitations in Section 4.4. Nevertheless, our analysis supports
that PQ3 provides injective agreement as well. This is because:

(a) For every counter and for a fixed session, participants accept a message
only once since they immediately increase the counter. By our agree-
ment lemma, we know participants agree on message counters, and
therefore, the adversary cannot simply replay an honestly generated
and encrypted message under a different counter in the same session.

(b) Moreover, honest participants will never reuse keys to send a message
as every session is initialized with one freshly sampled ECDH ephemeral
key, and therefore, the adversary also cannot replay the ciphertext in a
different session.

(c) The message key is included in the signature, i.e., the adversary also
cannot generate their own ciphertext and inject that as this would
require compromise of the sender’s long-term identity key, which is not
considered under our threat model as this key is stored in the Apple
Secure Enclave.
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We plan to investigate and prove these statements formally in future
work.

4.4 Limitations

The scope of our analysis was limited to the protocol design as described
in the documentations we received. PQ3’s implementation was not part of
this analysis. Furthermore, as our analysis is based on symbolic models, it
necessarily abstract away some details of the concrete implementation, like
message lengths and the particular algorithmic details of the ciphers used.

Due to technical limitations, we do not explicitly consider the compromise
of root keys, chain keys, and message keys. We instead allow the compromise
of the secret inputs used to derive these keys. This limits our reasoning
about an adversary with crypt-analytic capabilities that can break such keys,
and what we can derive about remaining guarantees by, e.g., symmetric
ratcheting. This limitation stems from what we believe to be limitation of
Tamarin. For example, when we considered the explicit leakage of, e.g., chain
keys, Tamarin failed to deduce the temporal dependencies between various
session states, i.e., it would not conclude that it is impossible to reuse a
counter in a session using the exact same key material, although the counter
is incremented on every interaction. This limitation also prevented us from
proving injective agreement. We believe it should be possible to soundly
extend Tamarin to better support such reasoning. However this remains as
future work.

Lastly, we omit multiple incoming chains from the model, do not consider
long-term identity or pre-key rollover, and only consider group chats implicitly.
However, PQ3 implements group chats using multiple, individual device-
to-device sessions, and our analysis considers the security of each of these
sessions.

5 Results and Conclusions

We have used Tamarin to formally verify the device-to-device messaging
protocol PQ3. From our analysis, we conclude that this protocol achieves
strong security guarantees against an active network adversary who can
selectively compromise parties and has quantum computing capabilities. Our
formal analysis provides machine-checked proofs of fine-grained secrecy and
authentication properties, and we found no attacks on PQ3 during the devel-
opment of our proofs. Our analysis provides a high degree of assurance that
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PQ3 functions securely, even when sufficiently powerful quantum computers
become available.

Our formal analysis provides value beyond the proofs themselves. Our
verified security guarantees are far more detailed than what was set out as
security goals in PQ3’s specification. For example, our analysis establishes
that PQ3 provides post-compromise security even against active adversaries
provided that long-term identity keys do not leak. In contrast, Signal, for
example, only provides post-compromise security against passive adversaries.
Additionally, the secrecy lemma provides a detailed account of the impact
that the compromise of every individual key has. Finally, as is often the case
when using Formal Methods, our analysis helped tighten PQ3’s specification.
During the specification’s formalization, we uncovered both ambiguities and
technical issues, which have since been addressed by Apple. These include,
for example, ambiguities around key usage or checks made by participants
that could not have been implemented as originally specified.

Next Steps and Future Work. We plan to make our formal models and
proofs openly available. We also intend to address the shortcomings of our
formal model in an academic publication.
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