
Security analysis of the iMessage PQ3 protocol∗

Douglas Stebila
University of Waterloo

January 15, 2024

Abstract

The iMessage PQ3 protocol is an end-to-end encrypted messaging protocol designed for exchanging data
in long-lived sessions between two devices. It aims to provide classical and post-quantum confidentiality for
forward secrecy and post-compromise secrecy, as well as classical authentication. Its initial authenticated
key exchange is constructed from digital signatures plus elliptic curve Diffie–Hellman and post-quantum
key exchanges; to derive per-message keys on an ongoing basis, it employs an adaptation of the Signal
double ratchet that includes a post-quantum key encapsulation mechanism. This paper presents the
cryptographic details of the PQ3 protocol and gives a reductionist security analysis by adapting the
multi-stage key exchange security analysis of Signal by Cohn-Gordon et al. (J. Cryptology, 2020). The
analysis shows that PQ3 provides confidentiality with forward secrecy and post-compromise security
against both classical and quantum adversaries, in both the initial key exchange as well as the continuous
rekeying phase of the protocol.

∗This paper was supported by Apple Inc.

1

Contents

1 Introduction 3

2 Preliminaries and notation 6
2.1 Cryptographic building blocks . 7
2.2 Key exchange protocol notation . 9

3 iMessage PQ3 Protocol description 10
3.1 User registration . 11
3.2 Session start (initial key establishment) . 11
3.3 Asymmetric ratchet . 12
3.4 Symmetric ratchet . 12
3.5 Additional PQ3 components . 15

3.5.1 Message authentication . 15
3.5.2 The KDFRKCK function . 15

4 Security model 16
4.1 Security experiment . 16
4.2 Freshness . 17

5 Security proof 20
5.1 Overview of proof and main theorem . 20
5.2 Lemmas 1 and 2: Uniqueness of session identifiers . 22
5.3 Lemma 3: Initial key establishment for the initiator . 23
5.4 Lemma 4: Initial key establishment for the responder . 26
5.5 Lemmas 5 and 6: Asymmetric ratchet . 28
5.6 Lemmas 7 and 8: Symmetric ratchet . 33

References 35

2

1 Introduction

Secure messaging protocols. The last decade has seen a rapid advance in the security of messaging
protocols. Early instant messaging protocols often had little to no security: some systems employed encryption
between a user’s device and the service provider’s server, but this still allowed the service provider to see
plaintext of users’ messages as they were relayed from one user to another. PGP-encrypted email [Zim95]
was one possible way for users to obtain end-to-end encrypted communication, but the usability challenges of
PGP meant it was only accessible to advanced users. There was a clear need for comprehensive security with
end-to-end encryption to protect instant messaging from passive and active attackers, including a potentially
malicious service provider.

The Off-the-Record Messaging Protocol (OTR) [BGB04] was one of the first protocols that provided
end-to-end security for 2-party instant messaging, and was primarily used via a plug-in or add-on to existing
instant messaging clients. OTR recognized that the security needs of chat sessions might be different
from traditional key exchange protocols, since chat sessions may be long-lived, and user devices might be
compromised at some point over the potentially long lifetime of the chat session. Consequently, the OTR
protocol did a new Diffie–Hellman key exchange with each round-trip of chat messages to derive new message
encryption keys; this technique, now called asymmetric ratcheting, made it hard for an adversary who
compromised a device at a particular point in time to re-compute earlier message encryption keys (assuming
they were deleted from memory) and also later message encryption keys (assuming the adversary’s intrusion
is only temporary).

While OTR did not see widespread adoption, it influenced the design of the Signal protocol [Sig16], by
Marlinspike and Perrin, which combined an implicitly authenticated key exchange protocol with the ratcheting
technique to achieve end-to-end encrypted security messaging with multiple security properties, including
authenticity, deniability, and confidentiality with both forward secrecy and post-compromise secrecy. An
important characteristic of the Signal protocol is that it achieves end-to-end encryption without sacrificing
asynchronicity: messages can be sent from a sender to a recipient (via a relay server) at any point in time,
without the recipient needing to be online to complete the exchange. Being end-to-end encrypted, the relay
server cannot see the plaintext of the users’ messages (though it may be able to see metadata). The Signal
protocol has been widely adopted in the namesake Signal messenger, as well as many other applications and
products, notably including WhatsApp.

The above protocols focused primarily on 2-party end-to-end encrypted messaging; building protocols for
encrypted group messaging is challenging, in part due to the difficulties of efficiently managing and updating
group state in an asynchronous manner. The Messaging Layer Security (MLS) protocol [BBR+23] is an
initiative of the Internet Engineering Task Force to build an open standard for secure group messaging.

Post-quantum security. Another major trend in the past decade has been the initiation of the transition
to quantum-resistant cryptography.

In 1994, Shor [Sho94] published a quantum algorithm that could efficiently solve the factoring and discrete
logarithm problems using a sufficiently large quantum computer, which would then break the public key
cryptography used in all major secure communication protocols. Although it is not yet possible to build a
sufficiently large quantum computer to run Shor’s algorithm on cryptographic challenges of the size used
in communication protocols, the state of the art continues to improve in quantum computing research.
Furthermore, some security goals are threatened even if quantum computers do not yet exist: an eavesdropper
could record communications today, store it, and then break it when they have a quantum computer available
in the future. This “store now, decrypt later” attack would undermine data intended to have long-term
security.

A variety of cryptographic primitives have been proposed that base their hardness on mathematical
problems not solved by Shor’s factoring algorithm. The endeavour to build quantum-resistant cryptography,
also called post-quantum cryptography (PQC), was jump-started in 2015 with the announcement by the
United States National Institute of Standards and Technology (NIST) of their post-quantum cryptography
standardization project, with the goal of standardizing quantum-resistant digital signature schemes and public
key encryption or key encapsulation mechanisms (KEMs). After a multi-year process involving several rounds
of review, in 2022 NIST announced the selection of 4 post-quantum algorithms for standardization: the

3

key encapsulation mechanism CRYSTALS-Kyber [SAB+22], and 3 digital signature schemes (CRYSTALS-
Dilithium [LDK+22], Falcon [PFH+22], and SPHINCS+ [HBD+22]).

In parallel, academia and industry have begun updating and redesigning communication protocols to
incorporate post-quantum cryptography. There are several factors that mean the transition to post-quantum
cryptography is non-trivial, even after new algorithms are standardized. One factor is that the available
post-quantum algorithms generally have larger communication sizes compared to traditional algorithms: for
example, post-quantum algorithm CRYSTALS-Kyber requires the exchange of 2432 bytes to establish a shared
secret, whereas elliptic curve Diffie–Hellman key exchange can do so with just 64 bytes of communication.
Additionally, KEMs are not always a drop-in replacement for Diffie–Hellman key exchange as they have a
slightly different communication pattern.

Consequently, new or updated designs will be necessary in many cases to upgrade existing communication
protocols to have post-quantum security. Furthermore, many adopters are choosing to deploy post-quantum
cryptography in a so-called hybrid mode, which uses both an existing classical algorithm (e.g., elliptic curve
Diffie–Hellman) and a post-quantum algorithm (e.g., Kyber key exchange) together to achieve security as
long as either algorithm remains unbroken. The hybrid approach can reduce risk in depending on newer
cryptographic assumptions while still providing the potential of post-quantum security, with relatively small
additional cost, and is being considered for a variety of protocols, including TLS [SFG23] and SSH [KSH23].

Goals of the iMessage PQ3 protocol. The iMessage PQ3 protocol is an end-to-end encrypted messaging
protocol designed for exchanging data in long-lived sessions between two devices, which aims to provide
hybrid classical and post-quantum security.

The main goals of the PQ3 protocol are as follows:

• Confidentiality should be provided for application data between the sender and the receiver, including
against eventually-quantum attackers carrying out “store now, decrypt later” attacks.

• Authentication should allow a receiver to identify the sender of a message.

• Forward secrecy of session keys: If a party’s state (including its long-term key) is compromised at one
point in time, ciphertexts previously transmitted cannot be decrypted (assuming the corresponding
messages were deleted from the compromised device).

• Forward secrecy should be available on a per-message basis.

• Post-compromise security of session keys, also known as healing : If a party’s device is compromised at
one point in time, but subsequently secured again (for example, because malware was detected and
removed), ciphertexts transmitted after the device was healed cannot be decrypted. Post-compromise
security should be available on a per-round-trip basis; post-quantum post-compromise security may be
amortized across several round-trips if the bandwidth cost of larger post-quantum messages is too high
to do with every round-trip.

• Cryptographic replay protection should be able to detect and discard replayed messages.

• Asynchronous messaging : messages can be sent and received at any time via a relay server without
requiring online interaction between the sender and receiver.

Because of the intended application scenario for the PQ3 protocol, it does not aim to address group
messaging, authentication against quantum adversaries, or cryptographic deniability.

The PQ3 protocol should be secure against passive or active classical adversaries, as well as passive
quantum adversaries.

Some, but not all, of the goals for PQ3 are similar to other end-to-end encrypted messaging protocols
such as the Signal protocol [Sig16], so some design elements and analysis techniques from Signal are helpful
in understanding PQ3. We begin by reviewing the Signal protocol, which was designed by Marlinspike and
Perrin, building on earlier end-to-end encrypted message protocols such as Off-the-Record Messaging (OTR)
[BGB04].

4

The Signal protocol. The Signal protocol involves several cryptographic components which work together
to achieve multiple security goals. The main phases of the Signal protocol are as follows:

• Registration: Each user generates a long-term identity key pair as well as several additional key pairs,
and uploads the public keys to a key server; this is called a “pre-key bundle”.

• Initial key exchange also known as the root key establishment or session start : The initiator of a session
retrieves the recipient’s pre-key bundle from the key server, and performs multiple Diffie–Hellman key
exchanges depending on long-term, medium-term, and ephemeral keys to produce a shared secret “root
key”. In Signal this is called the X3DH handshake [MP16].

• Asymmetric ratchet : In each round trip between the two users, new ephemeral Diffie–Hellman public
keys are exchanged to generate new DH shared secrets, which are hashed together with the previous
root key to generate a new root key.

• Symmetric ratchet : From each root key, a key derivation function is used to generate a chain of keys
which can be used for symmetric authenticated encryption.

In Signal, the asymmetric and symmetric ratchet together are called the double ratchet [PM16].

Security of Signal. The Signal protocol aims to achieve multiple security goals.

• Entity authentication: Parties are mutually authenticated using implicitly authenticated key exchange
in the X3DH handshake. Note that the initial delivery of long-term public keys is done by a potentially
adversarial key server, but the application does provide a mechanism for parties to compare the received
keys by scanning QR codes in an out-of-band ceremony.

• Deniability : Authentication is derived from implicitly authenticated key exchange rather than digital
signatures, so no artifacts are generated that can be verified by a judge, providing a form of offline
deniability [DGK06, VGIK20].

• Forward secrecy of session keys.

• Post-compromise security of session keys.

The main building blocks in the Signal protocol are elliptic curve Diffie–Hellman key exchange and the
HKDF key derivation function [Kra10].

The first security analysis of the Signal protocol was given by Cohn-Gordon et al. [CGCD+17, CCD+20].
They adapted the multi-stage key exchange security model of Fischlin and Günther [FG14] to handle the
various stages and security properties of the Signal protocol, including forward secrecy and post-compromise
security. They gave a reductionist proof of the security of Signal in this multi-stage key exchange model,
assuming either the gap-Diffie–Hellman assumption in the random oracle model for HKDF, or the PRF-ODH
assumption [BFGJ17] plus PRF security of HKDF.

The iMessage PQ3 protocol. The PQ3 protocol has four main phases: registration, initial key exchange,
asymmetric ratchet, and symmetric ratchet. Compared with the Signal protocol, it shares some design
elements, including the basic idea for the double ratchet, but uses different designs for the registration and
initial key exchange, and adds post-quantum components to the asymmetric ratchet. The PQ3 protocol does
not aim to provide deniability, so it uses digital signatures for authentication in the initial key exchange,
rather than implicitly authenticated key exchange.

Additionally, the PQ3 protocol aims to provide post-quantum confidentiality, so it adds post-quantum key
exchange in the initial key exchange and asymmetric ratchet using the ML-KEM [Nat23] and Kyber [SAB+20]
key encapsulation mechanisms (KEMs); the post-quantum KEMs are used alongside Diffie–Hellman key
exchange in a hybrid mode, aiming to achieve security as long as either the Diffie–Hellman or post-quantum
assumption holds. Because deniability is not a security goal, PQ3 is able to rely on digital signatures for
authentication, rather than needing to use implicit authentication as in Signal’s X3DH protocol. Furthermore,
DH is a non-interactive key exchange whereas KEMs are not, which in practice means that KEM ciphertexts

5

cannot be used as KEM public keys. Hence, whereas the DH portion of the asymmetric ratchet can use a DH
public key in two consecutive ratchet steps, the post-quantum KEM-based portion of the asymmetric ratchet
must use independent KEM public keys and ciphertexts, so twice as many values need to be transmitted
compared to the DH-based asymmetric ratchet. Finally, because the public keys and ciphertexts ML-KEM
and Kyber are much larger than ECDH public keys, PQ3 implementations provide the option for only
periodically doing a post-quantum key exchange, rather than on every round trip.

Security of PQ3. In this paper, we show that PQ3 provides authenticated key exchange and establishes
secure session keys, satisfying forward secrecy and post-compromise security. The security definition is
an adaptation of the multi-stage authenticated key exchange security model used by Cohn-Gordon et
al. [CGCD+17] to prove security of the Signal protocol. In particular, the model covers the authentication
and confidentiality (with forward secrecy and post-compromise security) goals as stated above, against passive
or active classical adversaries, as well as passive quantum adversaries.

Review of secure messaging literature. Two essential properties of modern secure messaging protocols
are forward secrecy and post-compromise security. Forward secrecy has long been known in the authenticated
key exchange literature [Gün90], but post-compromise security, also called healing, emerged more recently
with secure messaging protocols that use ratcheting, starting with OTR [BGB04] and Signal [Sig16]. Post-
compromise security was first formalized by Cohn-Gordon et al. [CCG16] and incorporated into the first
provable security analysis of Signal [CGCD+17], and has emerged as an important goal for many protocols
[BBL+23]. Ratcheted key exchange—characterized by both forward secrecy and post-compromise security—
has continued to be studied sometimes under the name continuous key agreement [MCYR17, PR18, ACD19,
DV19, JMM19, ACJM20, DHRR22, DH23]. Secure messaging in general and the double ratchet in particular
have also been analyzed in the universal composability paradigm [CJSV22, BFG+22a].

There have been several works in the literature aiming to provide post-quantum secure messaging protocols.
Alwen et al. [ACD19] showed how to generalize the double ratchet construction to use KEMs, which could then
provide post-quantum security with an appropriate KEM. Several papers have focused on adapting the Signal
X3DH handshake to provide post-quantum security [BFG+20, HKKP21, BFG+22b, DG22] while trying to
preserve the offline deniability feature of the Signal handshake, but this has been challenging since most
post-quantum KEMs do not fit the message flow of non-interactive key exchange (NIKE) [FHKP13]. In 2023,
Signal [KS23] released the PQXDH handshake (supported by a formal analysis using both CryptoVerif and
ProVerif tools [BJK23]) to replace the X3DH handshake in the Signal protocol, which hybridizes the X3DH
handshake with an additional post-quantum component (using the Kyber KEM), but using post-quantum
only for ephemeral key exchange in the handshake, not identity key exchange, which sidesteps the challenges
encountered in the aforementioned academic attempts at a post-quantum Signal-like handshake.

Outline. In Section 2, we present the cryptographic building blocks used in the iMessage PQ3 protocol.
Section 3 gives the details of the PQ3 protocol. In Section 4, we define the security model used for the
cryptographic analysis of the PQ3 protocol, and Section 5 gives the proof of security of PQ3 in this model.

2 Preliminaries and notation

In this section, we review the cryptographic building blocks used in the PQ3 protocol and their security
definitions, as well as introduce some notation for key exchange protocols.

Notation. If A is a deterministic algorithm, then y ← A(x) denotes running A with input x and assigning
the output to variable y. If A is a probabilistic algorithm, then y←$ A(x) denotes running A with input x
and fresh random coins, and assigning the output to variable y. AO(x) denotes running algorithm A oracle
access to oracle O.

6

2.1 Cryptographic building blocks

The iMessage PQ3 protocol uses several cryptographic building blocks, including a digital signature scheme,
key encapsulation mechanisms, pseudorandom functions, and Diffie–Hellman key exchange.

Definition 1 (Digital signature scheme). A digital signature scheme Σ is a tuple of algorithms:

• Σ.KGen() $→ (pk, sk): A probabilistic key generation algorithm that produces a public key pk and a
private key sk.

• Σ.Sig(sk,m) $→ σ: A possibility probabilistic signature generation algorithm that takes as input a
private key sk and message m, and produces a signature σ.

• Σ.Vf(pk,m, σ)→ {0, 1}: A deterministic signature verification algorithm that takes as input a public
key pk, message m, and signature σ, and produces as output a bit representing accept (1) or reject (0).

In PQ3, Σ is the ECDSA signature scheme using the NIST P-256 elliptic curve.

Definition 2 (Existential unforgeability under chosen message attack). A digital signature scheme Σ is said
to be existentially unforgeable under chosen message attack if it is computationally infeasible for an adversary
to produce a new message-signature pair that verifies, even given access to a signing oracle. More precisely,
define

Adveuf−cma
Σ (A) = Pr

[
EUF-CMAA

Σ ⇒ 1
]

where EUF-CMAA
Σ is the security experiment shown in Figure 1.

EUF-CMAA
Σ

1 : (pk, sk)←$ Σ.KGen()

2 : M ← ∅

3 : (m∗, σ∗)←$AOSig(pk)

4 : if Σ.Vf(pk,m∗, σ∗) ∧m∗ ̸∈M then return 1

5 : else return 0

OSig(m)

1 : M ←M ∪ {m}
2 : return Σ.Sig(sk,m)

Figure 1: Security experiment for existential unforgeability under chosen message attack for a signature
scheme Σ.

Definition 3 (Key encapsulation mechanism). A key encapsulation mechanism Γ is a tuple of the following
algorithms and a shared secret space K:

• Γ.KGen() $→ (pk, sk): A probabilistic key generation algorithm that produces a public key pk and a
private key sk.

• Γ.Enc(pk) $→ (ct, ss): A probabilistic encapsulation algorithm that takes as input a public key pk and
produces as output a ciphertext (also called an encapsulation) ct and a shared secret ss. Let Γ.R
denote the space of randomness used by probabilistic algorithm Γ.Enc. Note that the probabilistic
formulation (ct, ss)←$ Γ.Enc(pk) is equivalent to separately selecting the randomness and then calling
the derandomized version: r←$ Γ.R; (ct, ss)← Γ.Enc(pk; r).

• Γ.Dec(sk, ct)→ ss: A deterministic decapsulation algorithm that takes as input a secret key sk and a
ciphertext ct and produces as output a shared secret ss.

In PQ3, two key encapsulation mechanisms are used: Π1, which is ML-KEM1024 [Nat23], is used in the
initial key exchange; and Π2, which is Kyber768 [SAB+20], is used in the asymmetric ratchet.

Definition 4 (Indistinguishability under chosen ciphertext attack). A KEM Γ is said to be indistinguishable
under chosen ciphertext attack if it is computationally infeasible for an adversary to distinguish the shared

7

secret of a challenge ciphertext from a uniformly random shared secret, even given access to a decapsulation
oracle. More precisely, define

Advind−cca
Γ (A) =

∣∣∣∣Pr [IND-CCAA
Γ ⇒ 1

]
− 1

2

∣∣∣∣
where IND-CCAA

Γ is the security experiment shown in Figure 2.

IND-CCAA
Γ

1 : (pk, sk)←$ Γ.KGen()

2 : (c∗, ss∗0)←$ Γ.Enc(pk)

3 : ss∗1←$ Γ.K
4 : b←$ {0, 1}

5 : b′←$AODec(pk)

6 : if b = b′ then return 1

7 : else return 0

ODec(c)

1 : if c = c∗ then return ⊥
2 : else return Γ.Dec(sk, c)

Figure 2: Security experiment for indistinguishability under chosen ciphertext attack for a key encapsulation
mechanism Γ.

Definition 5 (Pseudorandom function). A pseudorandom function F : K × {0, 1}∗ → {0, 1}λ takes as input
a key k ∈ K and a string label ∈ {0, 1}∗, and produces as output a key F (k, label) ∈ {0, 1}λ.

In PQ3, several pseudorandom functions are used based on HKDF [Kra10]. The KDFRKCK construction
based on HKDF that is used in the PQ3 protocol is defined in Section 3.5.2.

Definition 6 (HKDF). HKDF [Kra10] consists of two algorithms:

• HKDF.Extract(ikm, salt)→ ext: A deterministic extraction algorithm that takes as input initial keying
material ikm and salt salt, and produces as output an extract key ext.

• HKDF.Expand(k, label, ℓ) → k′: A deterministic expansion algorithm that takes as input a key k
(typically the output of HKDF.Extract), a label label ∈ {0, 1}∗, and a length ℓ > 0, and produces a
binary string k′ of length ℓ.

HKDF.Extract and HKDF.Expand are both based on HMAC, and are instantiated using a cryptographic
hash function. In PQ3, the hash function used is SHA-384.

Definition 7 (Secure pseudorandom function). A pseudorandom function F is said to be secure if it is
computationally infeasible for an adversary to distinguish the output of a pseudorandom function (under an
unknown key) from the output of a random function. More precisely, let F : K×{0, 1}∗ → {0, 1}λ and define

AdvprfF (A) =
∣∣∣Pr [AF (k,·)()⇒ 1|k←$K

]
− Pr

[
AR(·)()⇒ 1|R←$ {all functions : {0, 1}∗ → {0, 1}λ}

]∣∣∣
In PQ3, we sometimes require that a multi-argument function be a secure pseudorandom function in a

specific input. For example, suppose f is an n-input function; we may require that f is a pseudorandom
function in its ith input. Formally, this can be done by defining

f ′(xj , (x1, . . . , xj−1, xj+1, . . . , xn)) = f(x1, . . . , xn)

where (x1, . . . , xj−1, xj+1, . . . , xn) is unambiguously encoded in {0, 1}∗, and requiring that f ′ is a secure
pseudorandom function. We use the notation

Adv
prfj
f (A) = Advprff ′ (A)

8

Definition 8 (Diffie–Hellman key exchange). Let g be the generator of a group G of prime order q. Diffie–
Hellman key exchange is a two party protocol in which Alice generates a private key a←$ Zq and corresponding
public key A← ga, and Bob generates a private key b←$ Zq and corresponding public key B ← gb. They
exchange public keys A and B, and compute shared secret gab = Ab = Ba.

In PQ3, G is the NIST P-256 elliptic curve.

Definition 9 (PRF-ODH). Let g be the generator of a group G of prime order q, and let F : G× {0, 1}∗ →
{0, 1}λ be a pseudorandom function. The PRF-ODH assumption for F and g holds if it is computationally
infeasible for an adversary to distinguish from random the output of F on a Diffie–Hellman shared secret and
an adversary-chosen label, even given the ability to get F evaluated on values of the adversary’s choice. More
precisely, define

Advprf−odh
g,F (A) =

∣∣∣∣Pr [PRFODHA
g,F ⇒ 1

]
− 1

2

∣∣∣∣
where PRFODHA

g,f is the security experiment shown in Figure 3.
Note that we use the mmPRF− ODH variant from [BFGJ17].

PRFODHA
g,F

1 : u, v←$ Zq

2 : L← ∅

3 : (x∗, st)←$AU,V(gu, gv)

4 : y0 ← F (guv, x∗)

5 : y1←$ {0, 1}λ

6 : b←$ {0, 1}

7 : b′←$AU,V(st, yb)

8 : if (guv, x∗) ∈ L then

9 : z←$ {0, 1}
10 : return z

11 : if b = b′ then return 1

12 : else return 0

U(W,x)

1 : L← L ∪ {(Wu, x)}
2 : return F (Wu, x)

V(W,x)

1 : L← L ∪ {(W v, x)}
2 : return F (W v, x)

Figure 3: Security experiment for the PRF-ODH assumption for group with generator g and pseudorandom
function F .

2.2 Key exchange protocol notation

Definition 10 (Multi-stage key exchange protocol). A multi-stage key exchange protocol Π is a tuple of
algorithms along with a keyspace K. The algorithms are:

1. IDKeyGen() $→ (idecvkP , idecskP): A probabilistic long-term identity key generation algorithm that
outputs a long-term public key / secret key pair.

2. PKBGen(idecskP) $→ (preecpkP,i, preecskP,i, prepqpkP,i, prepqskP,i, σ): A probabilistic pre-key bundle
generation algorithm that takes as input a long-term identity secret key and outputs an ephemeral
elliptic curve pre-key key pair, an ephemeral post-quantum KEM pre-key key pair, and a signature.

3. SessionStartS(π, idecvkR,PKBR,i) $→ (π′,msg′): A probabilistic sender session start algorithm that
takes as input a session state π, the receiver’s identity public key idecvkR, and the public parts of
pre-key bundle PKBR,i, and updates the session state π′ as well as producing an outgoing protocol
message, which in PQ3 contains an EC ratchet public key rchecpk, PQ pre-key ciphertext prepqct, and
PQ ratchet public key rchpqpk, a hash value, and a signature σ.

9

4. SessionStartR(π, idecvkS ,PKBR,i,msg) $→ (π′,msg′): A probabilistic receiver session start algorithm
that takes as input a session state π, the sender’s identity public key idecvkS , the public and private
parts of pre-key bundle PKBR,i, and a protocol message msg which in PQ3 contains asymmetric ratchet
public keys and ciphertexts and check values, and updates the session state π′ as well as producing a
protocol message which in PQ3 contain asymmetric ratchet public keys and ciphertexts, namely an
outgoing EC ratchet public key rchecpk′, PQ ratchet ciphertext rchpqct′, and PQ ratchet public key
rchpqpk′, as well as a signature.

5. AsymRatchet(π,msg) $→ (π′,msg′): A probabilistic asymmetric ratchet algorithm that takes as input
a session state π and a protocol message msg which in PQ3 contains asymmetric ratchet public keys
and ciphertexts and a signature, and updates the session state π′ as well as produces a protocol message
which in PQ3 contains asymmetric ratchet public keys and ciphertexts and a signature.

6. SymRatchet(π, chain, j) → π where chain = in or out: A symmetric ratchet algorithm that takes as
input a session state π and the index of a symmetric chain chain[j], and updates the chain state.

Let P be a party. We denote P ’s pth session by πP,p. A session is an execution of the protocol at a party,
and represents one party’s execution in a single long-lived chat. In a long-lived chat between two parties
Alice and Bob, there will be two sessions: one at Alice, one at Bob.

Within each session, there will be many stages, each of which may establish a shared secret. In Signal and
PQ3, the stages within a session can be viewed as being organized into a “tree” of stages. The main ‘trunk’
of the tree consists of the initial session start / handshake stage, and those created by the asymmetric ratchet.
Stages on the trunk are denoted by [asym0], [asym1], [asym2], Off of each trunk stage [asymj] there are
two branches: the incoming chain in[j] and the outgoing chain out[j]. These two chains are advanced using
the symmetric ratchet, and the stages on these chains are [inj,0], [inj,1], . . . , and similarly for [outj,ℓ]. (In
PQ3, off of each trunk stage, only one of the incoming or outgoing chains will be populated, and the other
will be null, as the PQ3 asymmetric ratchet is stepped forward to create alternating incoming and outgoing
chains.) Implicitly each chain stores its current length, which is denoted |[chain]|.

Definition 11 (Session state). Each party, for each session, maintains a session state π which is a collection
of the following variables:

• π.role ∈ {init, resp}: the instance’s role

• π.peerid: the identifier of the alleged peer

• π.peeripk: the peer’s long-term identity public key

• π.peerprepk: the peer’s EC and PQ pre-key public keys

• π.status[s] ∈ {active, accept, reject}: execution status for stage s, set to active upon start of a new
stage, and set to accept or reject to indicate acceptance or rejection of a particular stage and its key

• π.k[s] ∈ K: the session key for stage s; can be a root key rk, a chain key ck, or a message key mk

• π.sid[s]: the identifier of stage s of session π

• π.st[s]: protocol-specific state for stage s of session π

3 iMessage PQ3 Protocol description

In this section we present the iMessage PQ3 protocol. As previously explained, the main components of the
protocol are: user registration (Section 3.1) in which each party generates a long-term key pair as well as
many pre-key bundles, and uploads them to the server; session start (Section 3.2), which establishes the
initial shared secret between the initiator and the responder; the asymmetric ratchet (Section 3.3), which
establishes new shared secrets after each round trip; and the symmetric ratchet (Section 3.4), which derives
keys for each message.

Table 1 shows the various public key material used by parties in the session start and asymmetric ratchet,
and the symmetric keys produced at the various stages.

10

Asymmetric key pairs

idecvkP idecskP Party P long-term (identity) EC key pair for signature scheme Σ
preecpkP,i preecskP,i Party P prekey bundle i prekey EC key pair
prepqpkP,i prepqskP,i Party P prekey bundle i prekey PQ key pair
prepqctP,p Party P session p prekey PQ ciphertext
rchecpkP,p,i rchecskP,p,i Party P session p asymmetric stage i ratchet EC key pair
rchpqpkP,p,i rchpqskP,p,i Party P session p asymmetric stage i ratchet PQ key pair
rchpqctP,p,i Party P session p asymmetric stage i ratchet PQ ciphertext

Symmetric keys

πP,p.rk[asymi] Party P session p asymmetric stage i root key
πP,p.ck[ini,j] Party P session p incoming chain i symmetric stage j chain key
πP,p.mk[ini,j] Party P session p incoming chain i symmetric stage j message key
πP,p.ck[outi,j] Party P session p outgoing chain i symmetric stage j chain key
πP,p.mk[outi,j] Party P session p outgoing chain i symmetric stage j message key

Table 1: Keys used in the PQ3 protocol.

3.1 User registration

The user registration phase is run by each party P when they first set up their device. Associated to each
party P is an identity string idP .

Identity keypair. Each party P prepares a long-term identity key pair consisting of (the public components
of):

• (idecvkP , idecskP)←$ Σ.KGen()

Pre-key bundles. Each party P also prepares many pre-key bundles PKBP,i for i = 1, . . . , each consisting
of (the public components of):

• preecskP,i←$ Zq, preecpkP,i ← gpreecskP,i

• (prepqpkP,i, prepqskP,i)←$ Π1.KGen()

• σ←$ Σ.Sig(idecskP , labelregistration∥prepqpkP,i∥preecpkP,i∥labelversion)

At registration time, party P uploads its first pre-key bundle to the server, and then uploads subsequent
pre-key bundles periodically at later times. The party saves the corresponding secret keys locally. A pre-key
bundle is meant to be used for a particular period of time, and as such includes a timestamp to prevent the
server from replaying a pre-key bundle at a later period of time outside the validity period. As such, we
model pre-keys as “medium-term” keys which can be reused in many sessions.

3.2 Session start (initial key establishment)

Suppose a sender S wants to start a session with a recipient R. The s’th session at S will be denoted by πS,s.
We assume the sender has a copy of the receiver’s identity public key idecvkR obtained authentically

through some out-of-band mechanism, and similarly the responder R has an authentic copy of the sender’s
identity public key idecvkS . (If these are obtained from the untrusted server, then the security properties
shown in this paper apply only if the server does not replace / alter user’s identity public keys, or if the users
authenticate each others’ identity public keys using some out-of-band mechanism, such as comparing a hash
of the identity public keys [App23].)

The sender S obtains a fresh pre-key bundle PKBR,i for recipient R from the server. The sender then
proceeds as in Figure 4. By the end of SessionStartS, the initiator has set the root key for stage [asym0] and
the chain key for outgoing chain [out0,0], and produced an outgoing message for the responder.

11

SessionStartS(πS,s, idecvkR,PKBR,i)

1 : // Verify signature on prekey bundle

2 : Σ.Vf(idecvkR, labelregistration∥prepqpkR,i∥preecpkR,i∥labelversion,PKBR,i.σ)

3 : // Generate sender ratchet ECDH key pair

4 : rchecskS,s,1←$ Zq, rchecpkS,s,1 ← grchecskS,s,1

5 : // Compute ratchet/prekey ECDH shared secret

6 : ecss← preecpk
rchecskS,s,1

R,i

7 : // Encapsulate against receiver PQ prekey

8 : prepqrndS,s←$ Π1.R
9 : (prepqctS,s, pqss)← Π1.Enc(prepqpkR,i; prepqrndS,s)

10 : // Derive session identifier and root/chain keys

11 : πS,s.sid[asym0]← idS∥idecvkS∥idR∥idecvkR∥labelstart∥preecpkR,i∥rchecpkS,s,1∥prepqctS,s∥prepqpkR,i

12 : (rk, ck)← KDFRKCK(0, ecss, pqss, πS,s.sid[asym0])

13 : // Set first root key

14 : πS,s.rk[asym0]← rk

15 : // No incoming chain 0

16 : // Initialize outgoing chain 0

17 : πS,s.ck[out0,0]← ck

18 : // Generate outgoing PQ ratchet key

19 : (rchpqpkS,s,1, rchpqskS,s,1)←$ Π2.KGen()

20 : // Save state

21 : πS,s.st[asym1]← (rchecskS,s,1, rchpqskS,s,1)

22 : // Outgoing message

23 : generate signature σ using idecskS as per Section 3.5.1 with values rchecpkS,s,1, prepqctS,s, rchpqpkS,s,1

24 : and pre-key hash H(preecpkR,i∥prepqpkR,i)

25 : return (rchecpkS,s,1, prepqctS,s, rchpqpkS,s,1, H(preecpkR,i∥prepqpkR,i), σ)

Figure 4: The operations of the PQ3 initial key exchange for initiator S in session πS,s with responder R
using pre-key bundle PKBR,i.

The receiver R, to start a new session number r with sender S, after receiving an incoming session start
message, proceeds as in Figure 5. By the end of SessionStartR, the responder has set the root keys for stages
[asym0] and [asym1] and the chain keys for incoming chain [in0,0] and outgoing chain [out1,0], and produced
an outgoing message for the initiator.

3.3 Asymmetric ratchet

Upon the receipt of a message from its peer containing ephemeral public keys allowing the creation of a new
asymmetric ratchet stage, a party P in session πP,p that has set πP,p.rk[asymj−1] advances the asymmetric
ratchet two steps (step j for the incoming chain, step j + 1 for the outgoing chain) by proceeding as in
Figure 6. By the end of AsymRatchet, the party has set the root keys for stages [asymj] and [asymj+1] and
the chain keys for incoming chain [inj,0] and outgoing chain [outj+1,0], and produced an outgoing message
for its peer.

3.4 Symmetric ratchet

In order to derive message keys in a chain chain[j] where chain[j] = in[j] or out[j], party P in session
πP,p proceeds as in Figure 7. By the end of SymRatchet, the party has derived the ℓth message key

12

SessionStartR(πR,r, idecvkS ,PKBR,i, (rchecpkS,s,1, prepqctS,s, rchpqpkS,s,1, h = H(preecpkR,i∥prepqpkR,i), σ))

1 : Verify signature σ on incoming message using idecvkS as per Section 3.5.1

2 : Look up preecskR,i from PKBR,i based on h = H(preecpkR,i∥prepqpkR,i)

3 : // Compute ratchet/prekey ECDH shared secret

4 : ecss← (rchecpkS,s,1)
preecskR,i

5 : // Compute prekey PQ shared secret

6 : pqss← Π1.Dec(prepqskR,i, prepqctS,s)

7 : // Derive session identifier and root/chain keys

8 : πR,r.sid[asym0]← idS∥idecvkS∥idR∥idecvkR∥labelstart∥preecpkR,i∥rchecpkS,s,1∥prepqctS,s∥prepqpkR,i

9 : (rk, ck)← KDFRKCK(0, ecss, pqss, πR,r.sid[0])

10 : // Set first root key

11 : πR,r.rk[asym0]← rk

12 : // No outgoing chain 0

13 : // Initialize incoming chain 0

14 : πR,r.ck[in0,0]← ck

15 : // Generate outgoing ECDH ratchet key

16 : rchecskR,r,2←$ Zq, rchecpkR,r,2 ← grchecskR,r,2

17 : // Compute ratchet ECDH & PQ shared secret

18 : ecss′ ← (rchecpkS,s,1)
rchecskR,r,2

19 : rchpqrndS,s,1←$ Π2.R
20 : (rchpqctR,r,1, pqss

′)← Π2.Enc(rchpqpkS,s,1; rchpqrndS,s,1)

21 : // Derive session identifier and root/chain keys

22 : πR,r.sid[asym1]← idS∥idecvkS∥idR∥idecvkR∥labelratchet∥rchecpkS,s,1∥rchecpkR,r,2∥rchpqctR,r,1∥rchpqpkS,s,1
23 : (rk′, ck′)← KDFRKCK(πR,r.rk[asym0], ecss

′, pqss′, πR,r.sid[asym1])

24 : // Set next root key

25 : πR,r.rk[asym1]← rk′

26 : // Initialize outgoing chain 1

27 : πR,r.ck[out1,0]← ck′

28 : // Generate outgoing PQ ratchet key

29 : (rchpqpkR,r,2, rchpqskR,r,2)← Π2.KGen()

30 : // Save state

31 : πR,r.st[asym2]← (rchecskR,r,2, rchpqskR,r,2)

32 : // Outgoing message

33 : generate signature σ using idecskR as per Section 3.5.1 with values rchecpkR,r,2, rchpqctR,r,1, rchpqpkR,r,2

34 : return (rchecpkR,r,2, rchpqctR,r,1, rchpqpkR,r,2, σ)

Figure 5: The operations of the PQ3 initial key exchange for responder R in session πR,r with initiator S
using pre-key bundle PKBR,i.

13

AsymRatchet(πP,p, (rchecpkP ′,p′,j+1, rchpqctP ′,p′,j , rchpqpkP ′,p′,j+1), σ)

1 : j ← |πP,p.[asym]| // j is the current length of the asym chain in πp,p, which will be odd for initiator and even for responder sessions

2 : Verify signature σ on incoming message using idecvkπP,p.peerid as per Section 3.5.1

3 : // Compute ratchet ECDH shared secret

4 : ecss← (rchecpkP ′,p′,j+1)
rchecskP,p,j

5 : // Compute ratchet PQ shared secret

6 : pqss← Π2.Dec(rchpqskP,p,j , rchpqctP ′,p′,j)

7 : // Derive session identifier and root/chain keys

8 : πP,p.sid[asymj]← idS∥idecvkS∥idR∥idecvkR∥labelratchet∥rchecpkP,p,j∥rchecpkP ′,p′,j+1∥rchpqctP ′,p′,j∥rchpqpkP,p,j

9 : (rk, ck)← KDFRKCK(πP,p.rk[asymj−1], ecss, pqss, πP,p.sid[asymj])

10 : // Set next root key

11 : πP,p.rk[asymj]← rk

12 : // Initialize incoming chain j

13 : πP,p.ck[inj,0]← ck

14 : // Generate outgoing ratchet ECDH key

15 : rchecskP,p,j+2←$ Zq, rchecpkP,p,j+2 ← grchecskP,p,j+2

16 : // Compute ratchet ECDH & PQ shared secret

17 : ecss′ ← (rchecpkP ′,p′,j+1)
rchecskP,p,j+2

18 : rchpqrndP,p,j+1←$ Π2.R
19 : (rchpqctP,p,j+1, pqss

′)← Π2.Enc(rchpqpkP ′,p′,j+1; rchpqrndP,p,j+1)

20 : // Derive session identifier and root/chain keys

21 : πP,p.sid[asymj+1]← idS∥idecvkS∥idR∥idecvkR∥labelratchet∥rchecpkP ′,p′,j+1∥rchecpkP,p,j+2∥rchpqctP,p,j+1∥rchpqpkP ′,p′,j+1

22 : (rk′, ck′)← KDFRKCK(πP,p.rk[asymj], ecss
′, pqss′, πP,p.sid[asymj+1])

23 : // Set next root key

24 : πP,p.rk[asymj+1]← rk′

25 : // Initialize outgoing chain j + 1

26 : πP,p.ck[outj+1,0]← ck′// Generate outgoing PQ ratchet key

27 : (rchpqpkP,p,j+2, rchpqskP,p,j+2)←$ Π2.KGen()

28 : // Save state

29 : πP,p.st[asymj+2]← (rchecskP,p,j+2, rchpqskP,p,j+2)

30 : // Outgoing message

31 : generate signature σ using idecskP as per Section 3.5.1 with values rchecpkP,p,j+2, rchpqctP,p,j+1, rchpqpkP,p,j+2

32 : return (rchecpkP,p,j+2, rchpqctP,p,j+1, rchpqpkP,p,j+2, σ)

Figure 6: The operations of the PQ3 asymmetric ratchet for party P in session πP,p.

14

πP,p.mk[chainj,ℓ] in this chain, and the next chain key πP,p.ck[chainj,ℓ+1].

SymRatchet(πP,p, chain, j) where chain = in or out

1 : ℓ← |πP,p.chain[j]| // Index of current last stage of chain[j]

2 : // Derive message key for this index

3 : πP,p.mk[chainj,ℓ]← HKDF.Expand(πP,p.ck[chainj,ℓ], labelmkderivation, 256)

4 : πP,p.status[chainj,ℓ]← accept

5 : πP,p.k[chainj,ℓ]← πP,p.mk[chainj,ℓ]

6 : // Derive chain key for next index

7 : πP,p.ck[chainj,ℓ+1]← HKDF.Expand(πP,p.ck[chainj,ℓ], labelckderivation, 256)

Figure 7: The operations of the PQ3 symmetric ratchet for party P in session πP,p on chain chain[j].

3.5 Additional PQ3 components

3.5.1 Message authentication

All protocol messages transmitted in PQ3 are authenticated using signature scheme Σ. Each time party P
sends a message, the following information (including explicit length fields) is signed using idecskP . The
recipient correspondingly verifies each received message and signature using idecvkP .

• labelmessagesignature: a fixed label

• a fixed-size version number

• appct: application ciphertext with length encoding

• appad: application authenticated data with length encoding

• mkind: a value derived from the message key indicating the location in the ratchet

• rchecpk: the outgoing ratchet EC public key

• msgind: the message index

• dst = idS∥idecvkS∥idR∥idecvkR

• rchpqpk: the outgoing ratchet PQ public key (or a length-0 string if the PQ portion is omitted)

• rchpqct: the outgoing ratchet PQ ciphertext (or a length-0 string if the PQ portion is omitted)

• H(preecpkR,i∥prepqpkR,i): the hash of the recipient’s pre-keys from the pre-key bundle (only included
on the session-start message from the initiator to the responder, otherwise a length-0 string)

3.5.2 The KDFRKCK function

The initial key establishment and asymmetric ratchets make use of key derivation function KDFRKCK as
shown in Figure 8, which combines up to three pieces of keying material (a root key rk, an ECDH shared
secret ss1, and a post-quantum shared secret ss2) with a session identifier sid. The function produces a pair
of keys (rk, ck) which will be used as root and chain keys.

15

KDFRKCK(rk, ss1, ss2, sid)

1 : ext1 ← HKDF.Extract(ikm = ss1, salt = rk)

2 : if ss2 = ⊥ then ext2 ← HKDF.Extract(ikm = ext1, salt = 0)

3 : else ext2 ← HKDF.Extract(ikm = ext1, salt = ss2)

4 : z ← HKDF.Expand(ext2, labelrootkeyderivation∥sid, 512)
5 : rk ← z[0 . . . 255], ck ← z[256 . . . 511]

6 : return (rk, ck)

Figure 8: The key derivation function KDFRKCK used in PQ3 initial key establishment and asymmetric.

4 Security model

In this section, we present the multi-stage authenticated key exchange security model used to analyze the
security of the PQ3 protocol. It is based on an adaptation of the security model developed by Cohn-Gordon
et al. [CGCD+17] used to analyze the Signal protocol, which was based on the multi-stage AKE security
model of Fischlin and Günther [FG14], which is a Bellare–Rogaway-style AKE security model [BR94].

The basic idea of the Bellare–Rogaway (BR) security model for authenticated key exchange is as follows;
see [BMS19] for a more detailed introduction to AKE security models. The adversary interacts with a
challenger who simulates all honest parties to the adversary. The adversary directs all interactions between
the honest parties, and all communications flow via the adversary, modelling an active adversary. Additionally,
the adversary is allowed to compromise various secrets of the honest parties, including long-term identity
private keys, ephemeral private keys, intermediate session state, and established session keys. The adversary
is then challenged to learn information about the session key in a target session run by an honest party,
modelled as whether the adversary is able distinguish the session key from a uniformly random bitstring
of the same length; if the adversary cannot distinguish this with probability substantially different from 1

2 ,
then the session keys are effectively random and unknown from the adversary’s perspective. Given that
the adversary can compromise so many secret values, security is defined only for session keys for which the
adversary has not compromised sufficiently many inputs to make the key derivation trivial; this restriction is
captured by the notion of freshness, and the specific details of freshness vary depending on the exact security
characteristics the protocol aims to achieve. (Roughly speaking, allowing the adversary to compromise the
long-term identity key and intermediate session state allows the model to capture the notion of forward
secrecy, and allowing the adversary to compromise intermediate session state allows the model to capture the
notion of post-compromise security.)

The original Bellare–Rogaway AKE security model was defined for key exchange protocols that establish a
single session key, but modern protocols including TLS [JKSS12, DFGS15], QUIC [FG14], Signal [CGCD+17],
and iMessage PQ3 establish multiple keys in a single session, which can be capture using Fischlin and
Günther’s multi-stage AKE security model [FG14] which extends the BR model.

In this section, we customize the multi-stage AKE security model that was used by Cohn-Gorden et
al. [CGCD+17] to capture the security characteristics intended by the PQ3 protocol. Section 4.1 gives the
main security experiment for the security model, and Section 4.2 details the freshness condition.

4.1 Security experiment

Definition 12 (Multi-stage key indistinguishability). Let Π be a multi-stage key exchange protocol. Let A
be a probabilistic algorithm. Define

AdvIND
Π,nP,nB,nS,ns

(A) =
∣∣2 · Pr [INDA

Π,nP,nB,nS,ns
⇒ 1

]
− 1

∣∣
where the experiment INDA

Π is as defined in Figure 9 and nP, nB, nS, ns are positive integers representing the
maximum number of parties, pre-key bundles per party, sessions per party, and stages per session, respectively.

The experiment INDA
Π includes the following global variables:

• b: a challenge bit

16

Role Stage Input state Input intermediate keys Output state Output intermediate keys
π.role s π.st[s]

init [asym0] ⊥ ⊥ rchecskP,p,1, rchpqskP,p,1 πP,p.rk[asym0], πP,p.ck[in0,0]
resp [asym0] & [asym1] ⊥ ⊥ rchecskP,p,1, rchpqskP,p,1 πP,p.rk[asym0], πP,p.ck[in0,0], πP,p.rk[asym1], πP,p.ck[out1,0]
init [asymj] & [asymj+1], j ≥ 1 odd rchecskP,p,j , rchpqskP,p,j πP,p.rk[asymj−1] rchecskP,p,j+2, rchpqskP,p,j+2 πP,p.rk[asymj], πP,p.ck[inj,0], πP,p.rk[asymj+1], πP,p.ck[outj+1,0]
resp [asymj] & [asymj+1], j ≥ 2 even rchecskP,p,j , rchpqskP,p,j πP,p.rk[asymj−1] rchecskP,p,j+2, rchpqskP,p,j+2 πP,p.rk[asymj], πP,p.ck[inj,0], πP,p.rk[asymj+1], πP,p.ck[outj+1,0]
∗ [inj,ℓ] ⊥ πP,p.ck[inj,ℓ] ⊥ πP,p.ck[inj,ℓ+1]
∗ [outj,ℓ] ⊥ πP,p.ck[outj,ℓ] ⊥ πP,p.ck[outj,ℓ+1]

Table 2: Per-stage variables for session πP,p in the security model for the PQ3 protocol

Stage Session identifier Session key
s π.sid[s] π.k[s]

[asym0] idP ∥idecvkP ∥idP ′∥idecvkP ′∥labelstart∥preecpkP ′,i∥rchecpkP,p,0∥prepqctP,p∥prepqpkP ′,i ⊥
[asymj] idS∥idecvkS∥idR∥idecvkR∥labelratchet∥rchecpkP,p,j∥rchecpkP ′,p′,j+1∥rchpqctP ′,p′,j∥rchpqpkP,p,j ⊥
[inj,ℓ] πP,p.sid[[asymj]]∥labelin∥ℓ πP,p.mk[inj,ℓ]
[outj,ℓ] πP,p.sid[[asymj]]∥labelout∥ℓ πP,p.mk[outj,ℓ]

Table 3: Per-stage session identifiers and keys for session πP,p in the security model for the PQ3 protocol

• tested = (P, p, s) or ⊥: the record of the input to the query Test(P, p, s) or ⊥ if no Test query happened

Additional experiment INDA
Π keeps additional variables as follows:

• rev session[P, p, s] ∈ {true, false}: whether RevSessKey(P, p, s) was called or not

• rev state[P, p, s] ∈ {true, false}: whether RevState(P, p, s) was called or not

• rev rchkey[P, p, s, t] ∈ {true, false}: whether RevRchKey(P, p, s, t) was called or not

In order to instantiate PQ3 within the model of Figure 9, we define the per-stage variables in Table 2 and
the stage session identifiers in Table 3.

4.2 Freshness

In the PQ3 protocol, there are many different types of stages: the initial key establishment, the stages along
the asymmetric ratchet, and the stages along the symmetric ratchet. These different types of stages have
subtly different security properties: the secret values allowed to be compromised by the adversary without
trivially undermining security differ across the different types of stages. The freshness condition models these
conditions for each type of stage.

The overall freshness condition is given in Definition 17, and is built up from several intermediate
definitions. Roughly speaking, a session key is fresh if:

• It is valid (Definition 13): the stage must have accepted, and the adversary cannot have revealed the
peer’s long-term key before the stage accepted (which would otherwise allow for trivial impersonation).

• Not all of the inputs to the stage have been revealed (Definition 16): at least one input to the derivation
of the session key in this stage cannot have been revealed (which would otherwise allow for trivial
session key computation). As each stage type (initial key exchange, asymmetric ratchet, symmetric
ratchet) has different inputs, this condition is customized to each stage type as shown in Table 4. It
makes use of intermediate definitions tracking whether the intermediate session state has been revealed
(Definition 15) or whether the peer’s inputs to the stage have been revealed (Definition 14).

• The session key has not been revealed, either at the session itself or at the peer of the session, if it
exists.

Definition 13 (Validity). Validity captures some bare minimum conditions of a stage for the session key to
be plausibly fresh: the stage must have accepted and the adversary has not revealed the peer’s long-term key
before the stage accepted (which captures forward secrecy). Define the predicate valid(P, p, s) as:

valid(P, p, s) = (πP,p.status[s] = accept)

∧ time(πP,p.status[s]← accept) < time(RevLongTermKey(πP,p.peerid))

17

INDA
Π,nP,nB,nS,ns

b←$ {0, 1}
tested← ⊥
for P = 1 . . . nP do

(idecvkP , idecskP)←$ IDKeyGen()

for i = 1 . . . nB do

(preecpkP,i, preecskP,i, prepqpkP,i, prepqskP,i, σ)←$ PKBGen(idecskP)

pubinfo← (idecvk∗, preecpk∗, prepqpk∗, σ∗)

b′ ← ASend,Rev∗,Test(pubinfo)

if (tested = ⊥) ∨ ¬fresh(tested) then
r←$ {0, 1}
return r

if b = b′ then return 1

else return 0

Send(P, p,m)

if πP,p = ⊥ then

parse (P ′, i, role,m′)← m

if role = init then return SessionStartS(πP,p, idecvkP ′ ,PKBP ′,i)

else role = resp then return SessionStartR(πP,p, idecvkP ′ ,PKBP,i,m
′)

else

parse (type,m′)← m

if type = asym then return AsymRatchet(πP,p,m
′)

else type = sym

parse (chain, j)← m′

return SymRatchet(πP,p.chain[j])

RevLongTermKey(P)

rev ltk[P]← true

return idecskP

RevPreKey(P, i, t)

rev prekey[P, i, t]← true

if t = ec then return preecskP,i

elseif t = pqsk then return prepqskP,i)

elseif t = pqrnd then return prepqrndP,i)

RevRchKey(P, p, s, t)

rev rchkey[P, p, s, t]← true

if t = ec then return rchecskP,p,s

elseif t = pqsk then return rchpqskP,p,s)

elseif t = pqrnd then return rchpqrndP,p,s)

RevSessKey(P, p, s)

rev session[P, p, s]← true

return πP,p.k[s] as per Table 3

RevState(P, p, s)

rev state[P, p, s]← true

return πP,p.st[s]

and input intermediate keys in Table 2

Test(P, p, s)

if tested ̸= ⊥ then return ⊥
if πP,p.status[s] ̸= accept then return ⊥
if πP,p.k[s] = ⊥ then return ⊥
tested← (P, p, s)

if b = 0 then k ← πP,p.k[s]

else k←$K
return k

Figure 9: Security experiment for adversary A against multi-stage key indistinguishability of protocol Π

18

Note that within a session πP,p, if valid(P, p, s) holds and s′ is a stage of πP,p that accepted prior to stage
s, then valid(P, p, s′) also holds.

Definition 14 (Peer ratchet freshness). Peer ratchet freshness captures the idea that the ratchet secret key
of the peer of a stage has not been revealed. Define the predicate unrevpeer(P, p, j, t) as:

unrevpeer(P, p, j, t) = ∀p′ : πP,p.sid[[asymj]] = ππP,p.peerid,p′ .sid[[asymj]] =⇒ ¬rev rchkey[πP,p.peerid, p
′, j, t]

Definition 15 (State freshness). State freshness captures the idea that the state (intermediate keys) of
a stage has not been revealed, nor has the state (intermediate keys) of the stage at a peer session with a
matching session identifier. Define the predicate unrevstate(P, p, s) as:

unrevstate(P, p, s) = ¬rev state[P, p, s]

∧
(
∀p′ : πP,p.sid[s] = ππP,p.peerid,p′ .sid[s] =⇒ ¬rev state[πP,p.peerid, p

′, s]
)

Definition 16 (Stage input unrevealedness). Stage input unrevealedness captures the idea that at least
one input to the derivation of the session key of the stage has not been revealed. Because session keys of
different stages have different inputs, each stage type has a different stage unrevealedness predicate. Define
the predicate unrev(P, p, s) as shown in Table 4.

Stage s Role πP,p.role unrev(P, p, s)

[asym0] init ¬rev prekey[R, i, ec] ∧ ¬rev rchkey[P, p, 1, ec] ∧ ¬rev prekey[R, i, pqsk] ∧ ¬rev prekey[P, p, pqrnd]

[asym0] resp ¬rev prekey[P, i, ec] ∧ unrevpeer(P, p, 1, ec) ∧ ¬rev prekey[R, i, pqsk] ∧ unrevpeer(P, p, 1, pqrnd)

[asymj] : j > 0, j odd init
(
unrevstate(P, p, [asymj] ∧ unrev(P, p, [asymj−1])

)
∨
(
¬rev rchkey[P, p, j, ec] ∧ unrevpeer(P, p, j + 1, ec) ∧ ¬rev rchkey[P, p, j, pqsk] ∧ unrevpeer(P, p, j, pqrnd)

)
[asymj+1] : j > 0, j odd init

(
unrevstate(P, p, [asymj+1]) ∧ unrev(P, p, [asymj])

)
∨
(
¬rev rchkey[P, p, j + 2, ec] ∧ unrevpeer(P, p, j + 1, ec) ∧ ¬rev rchkey[P, p, j + 1, pqrnd] ∧ unrevpeer(P, p, j + 1, pqsk)

)
[asymj] : j > 0, j odd resp same as for [asymj] : j > 0, j odd with role = init

[asymj+1] : j > 0, j odd resp same as for [asymj+1] : j > 0, j odd with role = init

[chainj,0] : chain ∈ {in, out} ∗ unrevstate(P, p, [chainj,0]) ∧ unrev(P, p, [asymj])

[chainj,ℓ] : chain ∈ {in, out}, ℓ > 0 ∗ unrevstate(P, p, [chainj,ℓ]) ∧ unrev(P, p, [chainj,ℓ−1])

Table 4: Stage unrevealedness predicates unrev(P, p, s)

Definition 17 (Freshness). Freshness captures everything that is necessary for a session key to be plausibly
secure: the stage is valid and relevant input values are unrevealed according to the previous definitions, and
the adversary has not revealed the session key of the stage or of that stage at any matching session. Let s be
a stage in the pth session at party P . Define the predicate fresh(P, p, s) as:

fresh(P, p, s) = valid(P, p, s) ∧ unrev(P, p, s)

∧ ¬rev session[P, p, s]

∧
(
∀p′ : πP,p.sid[s] = ππP,p.peerid,p′ .sid[s] =⇒ ¬rev session[πP,p.peerid, p

′, s]
)

Interpreting the security model: forward secrecy and post-compromise security. It can be seen
that the security model implies the main desired security characteristics as follows.

• Forward secrecy: According to Definition 13, the adversary is only prohibited from revealing the
long-term key of the peer of the target session before the target session has accepted, but can do so
after it has accepted. Furthermore, according to Definition 17, a stage remains fresh even if the session
key or state of a later session is compromised.

• Post-compromise secrecy: According to Definition 16, a stage remains fresh if some, but not all
of the inputs to the state have been compromised. In other words, if the chaining state from an
earlier asymmetric stage is compromised, but the ephemeral key exchange in this asymmetric stage is
uncompromised, then the stage should still be considered fresh, which is post-compromise security /
healing.

19

5 Security proof

Although the PQ3 protocol derives many root and chain keys, it is the message keys that are considered the
session keys that are the “output” of the multi-stage key exchange protocol and which are required to be
indistinguishable from random. In order to prove that a particular message key is secure, we need to show
that the root and chain keys involved in the derivation of that message key are secure. The proof proceeds
modularly in multiple lemmas, each considering the root and chain keys derived in different types of stages in
the protocol.

We begin with an overview of the proof approach, then proceed with the lemmas for various stages of the
PQ3 protocol.

5.1 Overview of proof and main theorem

The lemmas for the various stages are as follows:

• Lemma 3 shows that the root key πS,s.rk[asym0] and chain key πS,s.ck[out0,0] established by the
initiator in the initial key establishment are secure.

• Lemma 4 shows that the root keys πR,r.rk[asym0] and πR,r.rk[asym1], and chain keys πR,r.ck[in0,0]
and πR,r.ck[out1,0] established by the responder in the initial key establishment are secure.

• Lemmas 5 and 6 show that the root and chain keys established in the first half and the second half of
the asymmetric ratchet are secure.

• Lemmas 7 and 8 show that the chain keys and message keys established in the symmetric ratchet are
secure.

It is the last two lemmas, Lemmas 7 and 8, that, when combined with the previous lemmas, yield the
overall result, collected in Theorem 1: that message keys output by PQ3 are secure in the multi-stage
authenticated key exchange security model.

Each lemma assumes that the stage in question is sufficiently unrevealed based on the relevant freshness
condition, and as described above shows that the root and chain keys established in that stage are secure. For
later stages, clauses of the freshness condition could imply that earlier stages are also sufficiently unrevealed,
and hence the lemma for the earlier stage would yield that the root and chain keys established in that earlier
stage are secure.

The proofs of the lemmas are shown using a sequence of games, starting from the original multi-stage
authenticated key exchange indistinguishability experiment (Definition 12) for the PQ3 protocol. Although
the specifics of the sequence of games varies depending on the particular lemma, we provide a little insight
here into the overall approach.

• We usually make a hop enforcing that honestly generated Diffie–Hellman public keys are unique; since
the protocol does not have separate nonces, unique DH public keys leads to unique session identifiers
(Lemma 1 and Lemma 2) and helps with uniqueness during authentication.

• As necessary, we guess the index of the target session, the peer session, the owner of the target session,
the peer of the target session, or the index of the responder’s pre-key bundle. This guessing results in a
non-tight proof.

• We reject any signatures received not generated by an honest party, giving a reduction to unforgeability
of the signature scheme.

• For elliptic curve Diffie–Hellman-based key exchanges, in the target stage, we replace the ECDH shared
secret with a random value. Note that technically we replace the intermediate key ext derived from the
ECDH shared secret using HKDF.Extract inside KDFRKCK with a random value by using the PRF-ODH
assumption; this is necessary because the reduction may be required to derive ECDH shared secrets
with some of the challenge values in other sessions, and hence the reduction requires the assistance of
one of the PRF-ODH oracles to do so.

20

• For post-quantum KEM-based key exchanges, in the target stage, we replace the KEM shared secret
with a random value, giving a reduction to the IND-CCA security of the KEM. (CPA security does not
suffice here, as the reduction may need to compute shared secrets involving the same KEM public key
used or replayed in other sessions, and hence the reduction requires the assistance of a decapsulation
oracle to do so.)

• After the ECDH or PQ shared secrets have been replaced with random values, subsequent keys
derived from those are replaced with random values, giving a reduction to the secure of the relevant
pseudorandom function, either HKDF.Extract, HKDF.Expand, or the combined KDFRKCK, in one or
more of their arguments.

There are also two helper lemmas (Lemmas 1 and 2) that prove that session identifiers established by
honest parties are unique.

Main theorem. The following theorem summarizes that the iMessage PQ3 protocol achieves security in
the multi-stage security model of Section 4, under appropriate assumptions on the building blocks.

Theorem 1. Assume that Σ is EUF-CMA, that HKDF.Expand and HKDF.Extract are both PRFs in their
first argument, and that KDFRKCK is a PRF in its first and third arguments. Assume that either the
PRF-ODH assumption holds for the elliptic curve group with HKDF.Extract in its first argument, or that Π1

is an IND-CCA-secure KEM. In the iMessage PQ3 protocol, consider the ℓth message key in the symmetric
ratchet stemming from the jth stage of the asymmetric ratchet in session πP,p; assume that this stage is
fresh according to Definition 17. Then, in the multi-stage security model of Section 4, this message key is
indistinguishable from a random bitstring of the same length.

Proof. Let t be an upper-bound on the runtime of the adversary. For a security notion x and a scheme y, let

ϵxy = max
A:time(A)≤t

Advxy(A)

where the maximum is taken over all algorithms A with running time at most t.
Let the target session key be πP,p.mk[chainj,ℓ], which is assumed to be fresh. We will derive a bound on

the adversary’s advantage in distinguishing πP,p.mk[chainj,ℓ] from random by combining the various lemmas
listed above.

• If πP,p is an initiator session, then by Lemma 3, the adversary’s advantage in distinguishing πP,p.rk[asym0]
and πP,p.ck[out0,0] from random is at most

ϵhs−init =
1

q

(
nPnB + nPnSns

2

)
+ n2

PnS

 ϵEUF-CMA
Σ

+nB min

{
1
q + ϵprf1−odh

g,HKDF.Extract + ϵprf1HKDF.Extract + ϵprf1HKDF.Expand,

ϵIND-CCA
Π1

+ ϵprf3KDFRKCK

} 
• If πP,p is a responder session, then by Lemma 4, the adversary’s advantage in distinguishing πP,p.rk[asym0]
and πP,p.ck[in0,0] from random is at most

ϵhs−resp =
1

q

(
nPnB + nPnSns

2

)
+ n2

Pn
2
SnB

 ϵEUF-CMA
Σ

+min

{
1
q + ϵprf1−odh

g,HKDF.Extract + ϵprf1HKDF.Extract + ϵprf1HKDF.Expand,

ϵIND-CCA
Π1

+ ϵprf3KDFRKCK

} 
• Let

ϵhs =

{
ϵhs−init, if πP,p is an initiator session,

ϵhs−resp, if πP,p is a responder session

• By repeated application of Lemma 5 and Lemma 6, the adversary’s advantage in distinguishing
πP,p.rk[asymj] and πP,p.ck[chainj,0] from random is at most

ϵasym−j = ϵhs + j(ϵasym−first + ϵasym−second)

21

where

ϵasym−first =

 ϵEUF-CMA
Σ

+max

{
ϵprf1KDFRKCK,min

{
1
q + ϵprf1−odh

g,HKDF.Extract + ϵprf1HKDF.Extract + ϵprf1HKDF.Expand,

ϵIND-CCA
Π2

+ ϵprf3KDFRKCK

}} 
• By Lemma 7 and repeated application of Lemma 8, the adversary’s advantage in distinguishing
πP,p.ck[chainj,ℓ] and πP,p.mk[chainj,ℓ] from random is at most

ϵsym−j−ℓ = ϵhs + j(ϵasym−first + ϵasym−second) + 2ℓ · ϵprf1HKDF.Expand

Hybrid security of ECDH and post-quantum. Theorem 1 shows that PQ3 message keys are secure
in the hybrid traditional/post-quantum setting, meaning that they are secure if either the elliptic curve
Diffie–Hellman problem remains hard (i.e., the PRF-ODH assumption holds in the relevant elliptic curve
group when combined with HKDF), or the post-quantum scheme remains secure (i.e., IND-CCA security
holds for the two post-quantum KEMs used). This can be seen by observing that the relevant advantage
bounds involve a term of the form

min
{
ϵprf1−odh
g,HKDF.Extract + . . . , ϵind−cca

Π + . . .
}

which implies that security holds even if one of the two assumptions is broken (i.e., has high advantage),
provided the other is unbroken (i.e., has low advantage).

5.2 Lemmas 1 and 2: Uniqueness of session identifiers

It will be helpful in later proofs to know that session identifiers are sufficiently unique. We prove some
preliminary lemmas to that effect.

In all these lemmas, we assume that no two honest parties ever generate the same Diffie–Hellman public
key. Our later proofs have a game hopping step to that effect, so that will be true at any of the times in later
proofs where we rely on these lemmas about unique session identifiers.

Lemma 1 (Uniqueness of [asym0] session identifiers). Suppose no two honest parties ever generate the same
Diffie–Hellman public key. If sid = πP,p.sid[asym0] for some session πP,p, then there is no other session at
party P with the same session identifier. Furthermore, there is at most one other session with the same
identifier, which if it exists is at R = πP,p.peerid and also in stage [asym0].

Proof. Recall that the [asym0] session identifier for a session with initiator S, responder R, and responder
prekey bundle indexed by i is

idS∥idecvkS∥idR∥idecvkR∥labelstart∥preecpkR,i∥rchecpkS,s,1∥prepqctS,s∥prepqpkR,i

Initiator S will set this to be the session identifier for at most 1 stage across all its sessions. That stage
if it exists will be an [asym0] stage due to the presence of labelstart. That stage if it exists will be unique
because the value rchecpkS,s,1 is generated by S and is assumed to be unique across all DH keys generated by
S.

Responder R will set this to be the session identifier for at most 1 stage across all its sessions. That stage
if it exists will be an [asym0] stage due to the presence of labelstart. That stage if it exists will be unique
because R will use prekey bundle i in at most one session, and the value preecpkR,i is generated by R and is
assumed to be unique across all DH keys generated by R.

No other honest party will set this to be a session identifier because of uniqueness of identity public
keys.

Lemma 2 (Uniqueness of [asymj] session identifiers). Suppose no two honest parties ever generate the same
Diffie–Hellman public key. If sid = πP,p.sid[asymj] for some session πP,p, then with probability at least 1−1/q
there is no other session at party P with the same session identifier.

22

Proof. Recall that the [asymj] session identifier for a session with initiator S, responder R is

idS∥idecvkS∥idR∥idecvkR∥labelratchet∥rchecpkP,p,j∥rchecpkP ′,p′,j+1∥rchpqctP ′,p′,j∥rchpqpkP,p,j

and that the [asymj+1] session identifier is

idS∥idecvkS∥idR∥idecvkR∥labelratchet∥rchecpkP ′,p′,j+1∥rchecpkP,p,j+2∥rchpqctP,p,j+1∥rchpqpkP ′,p′,j+1

We ensure uniqueness by looking at the 6th and 7th components of the above two session identifiers.
Suppose either πP,p.role = init and j is odd, or πP,p.role = resp and j is even; in other words, we are

considering when [asymj] is the first of the two stages set in AsymRatchet. Party P will set this to be the
session identifier for at most one [asymj] stage with j of this parity, because the 6th component of the session
identifier for asym stages of this parity is controlled by P and P picks a new rchecpkP,p,j value for this in
each such stage; these are assumed to be unique across all DH keys generated by P .

Consider now the session identifier for a [asymj′] stage for j′ of the opposite parity. Let c6 and c7 denote
the 6th and 7th components of the [asymj] session identifier. Let c′6 and c′7 denote the 6th and 7th components
of the [asymj′] session identifier.

In order for the session identifier for a [asymj′] stage for j′ even to be equal to the session identifier for
[asymj] stage for j odd, it would need to be the case that c′6 = c7, which is possible because the adversary
could controls c′6. But it would also need to be the case that c7 = c′7. Yet c

′
7 is under the control of honest

party P , is picked after c7 is provided, and is picked uniformly at random from a set of size q, so the chance
that c7 = c′7 is at most 1/q.

Now consider the case when either πP,p.role = init and j is even, or πP,p.role = resp and j is odd;
in other words, we are considering when [asymj] is the second of the two stages set in AsymRatchet. An
analogous argument works for this case, focusing on the 7th component of the session identifier, which is
controlled by party P and picked freshly for this stage.

5.3 Lemma 3: Initial key establishment for the initiator

Lemma 3. Consider session πS,s such that πS,s.role = init. Assume that Σ is EUF-CMA, that HKDF.Expand
and HKDF.Extract are both PRFs in their first argument, and that KDFRKCK is a PRF in its third argument.
Assume that either the PRF-ODH assumption holds for the elliptic curve group with HKDF.Extract in its first
argument, or that Π1 is an IND-CCA-secure KEM. If valid(S, s, [asym0]) ∧ unrev(S, s, [asym0]) holds, then
πS,s.rk[asym0] and πS,s.ck[out0,0] are indistinguishable from random.

Proof.

Game 0 (Original game). This game is the original multi-stage key indistinguishability security experiment
for the PQ3 protocol. Thus

Adv0 = AdvIND
Π,nP,nB,nS,ns

(A)
Game 1 (Require distinct honestly generated DH public keys). In this game, we ensure there is no collision
on any honestly generated DH public keys. The challenger maintains a list of all DH private values generated
during the game; if any DH private value appears twice, the challenger aborts the simulation and the adversary
automatically wins. The maximum number of honestly generated DH key pairs is nPnB + nPnSns and thus

Adv0 ≤
1

q

(
nPnB + nPnSns

2

)
+ Adv1

where q is the order of the group.

Game 2 (Guess index of target session). In this game, the challenger guesses in advance the index (S, s, 0) ∈
{1, . . . , nP} × {1, . . . , nS} × {0} of the session and stage against which the Test query is issued, and aborts if
the guess is incorrect. Thus

Adv1 = nPnSAdv2

Game 3 (Guess peer of target session). In this game, the challenger guesses in advance the identity R ∈
{1, . . . , nP} of the peer of the target session, and aborts if the guess is incorrect. Thus

Adv2 = nPAdv3

23

Game 4 (Abort if forged signature of prekey bundle). In this game, the challenger aborts if SessionStartS(πS,s, . . .)
accepted the signature on the prekey bundle PKBR,i it received, but that prekey bundle was never signed by
party R, and πS,s.[asym0] accepted before R’s long-term key was revealed. If the abort event occurs, then
PKBR,i.σ constitutes a forgery on the string labelregistration∥prepqpkR,i∥preecpkR,i∥labelversion under key
idecvkR.

Reduction B4 against EUF-CMA security of Σ: Reduction B4 receives as input a challenge signature
public key pk∗ and a signing oracle O, and must produce a forgery.

The reduction behaves similarly to Game 4, except as follows. For party R, it uses pk∗ as the long-term iden-
tity key instead of generating a new one. Whenever partyR needs to sign something, the reduction uses oracle O.
Suppose the abort event of Game 4 occurs. Note that this implies that RevLongTermKey(R) is not called. The
abort event implies that PKBR,i.σ is a valid signature on labelregistration∥prepqpkR,i∥preecpkR,i∥labelversion
but this prekey bundle was never signed by party R during prekey bundle generation. Moreover, since
signatures are domain separated with labelregistration, this string was never signed by party R during any
other part of the protocol. Thus labelregistration∥prepqpkR,i∥preecpkR,i∥labelversion was never queried to the
signing oracle O, so the reduction can return this string and signature as a winning forgery in the EUF-CMA
game for Σ. Thus

Adv3 ≤ AdvEUF-CMA
Σ (B4) + Adv4

Game 5 (Guess index of peer pre-key bundle). In this game, the challenger guesses in advance the index
i ∈ {1, . . . , nB} indicating which of R’s prekey bundles will be used in the target session, and aborts if the
guess is incorrect. Thus

Adv4 = nBAdv5

Branch A: elliptic curve security. The proof now branches into two cases: one based on the secrecy of ECDH
shared secrets, one based on the secrecy of KEM shared secrets.

Game 6 (Undo distinct DH public keys for the test session). In this game, the challenger does not abort if
the two DH public keys used in this session (preecpkR,i and rchecpkS,s,1) are the same. This is required since
a later proof step will substitute a DH challenge which could (with small but non-zero probability) have the
two challenge public keys equal. Since the latter is honestly generated independently of the former and the
size of the group is q, we have that

Adv5 =
1

q
+ Adv6

Game 7 (Replace key ext1 derived from DH shared secret with random). In this game, the challenger replaces
the ext1 value in the call to KDFRKCK with a random bitstring of the same length.

Reduction B7 against PRF-ODH security of the group with HKDF.Extract: Reduction B7 receives as input
a DH challenge U = gu, V = gv, and real-or-random value W , and PRF-ODH oracles OU and OV, and must
return its guess of whether W was real or random.

The reduction behaves similarly to Game 7, except as follows. For preecpkR,i, it uses U ; note rev prekey[R, i, ec] =
false by the freshness condition. For rchecpkS,s,1, it uses V ; note rev rchkey[S, s, 1, ec] = false by the freshness
condition. For ext1 in the call to KDFRKCK in πS,s stage [asym0], use W ; similarly in the matching session
πR,r stage [asym0] if it exists.

Since honest responder R will use each of its prekey bundles at most once, there is at most one session at
R which uses preecpkR,i. If that session received a different value V ′ as the peer EC ratchet public key, then
compute ext1 in that session by calling PRF-ODH oracle OU with V and the salt value unchanged. If that
session received V as the peer EC ratchet public key, then replace ext1 consistently in that session as well.
Either way, in that session, in the second half of SessionStartR for the computation of ecss′, compute that
second ext1 by querying the PRF-ODH oracle OU with the received peer EC ratchet public key and the salt
value unchanged.

Additionally, in the first execution of AsymRatchet for πS,s, compute ext1 in the first call to KDFRKCK by
querying the PRF-ODH oracle OV with the received peer EC ratchet public key and the salt value unchanged.

Reduction B7 outputs as its answer to the PRF-ODH challenger the same b′ output by A. When W is
real, B7 exactly simulates Game 6 to A, whereas when W is random, it simulates Game 7 to A. Thus

Adv6 ≤ Advprf1−odh
g,HKDF.Extract(B7) + Adv7

24

Game 8 (Replace key ext2 derived from ext1 with random). In this game, the challenger replaces the ext2
value in the call to KDFRKCK with a random bitstring of the same length.

Reduction B8 against PRF security of HKDF.Extract in its first argument : Reduction B8 has access to
an oracle O which either evaluates HKDF.Extract or is a random function, and must return its guess as to
whether the oracle is real or random.

The reduction behaves similarly to Game 8, except as follows. In πS,s stage [asym0] in the calculation
of ext2 inside KDFRKCK, it calls oracle O with the salt argument (either salt = 0 or salt = ss2). If the
matching session exists at the peer, then it does the same there. Reduction B8 outputs as its answer to the
PRF challenge the same b′ output by A. When O is real, reduction B8 exactly simulates Game 7 since ext1
is random, whereas when O is random, it simulates Game 8 to A. Thus

Adv7 ≤ Advprf1HKDF.Extract(B8) + Adv8

Game 9 (Replace key z = (rk, ck) derived from ext2 with random). In this game, the challenger replaces the
z = (rk, ck) value in the call to KDFRKCK with a random bitstring of the same length.

Reduction B9 against PRF security of HKDF.Expand in its first argument : Reduction B9 has access to
an oracle O which either evaluates HKDF.Expand or is a random function, and must return its guess as to
whether the oracle is real or random.

The reduction behaves similarly to Game 9, except as follows. In πS,s stage [asym0] in the calculation of z
inside KDFRKCK, it calls oracle O with the given label argument. If the matching session exists at the peer,
then it does the same there. Reduction B9 outputs as its answer to the PRF challenge the same b′ output by
A. When O is real, reduction B9 exactly simulates Game 8 since ext2 is random, whereas when O is random,
it simulates Game 9 to A. Thus

Adv8 ≤ Advprf1HKDF.Expand(B9) + Adv9

Branch B: post-quantum security

Game 10 (Replace pqss with random value). In this game, the challenger replaces the pqss value with a
random bitstring of the same length.

Reduction B10 against the IND-CCA security of KEM Π1: Reduction B10 receives as input a challenge
KEM public key pk∗, challenge ciphertext ct∗, and real-or-random value ss∗, and decapsulation oracle O[Dec],
and must return its guess of whether ss∗ was real or random.

The reduction behaves similarly to Game 10, except as follows. For prepqpkR,i, it uses pk∗; note
rev prekey[R, i, pqsk] = false by the freshness condition. For prepqctS,s it uses ct

∗; note rev prekey[S, s, pqrnd] =
false by the freshness condition. For pqss in πS,s stage [asym0], it uses ss

∗.
Since honest responder R will use each of its prekey bundles at most once, there is at most one session at

R which uses prepqpkR,i. If that session received a different value ct′ as the peer PQ prekey ciphertext, then
compute pqss in that session by calling the decapsulation oracle O[Dec] with ct′. If that session received ct∗

as the peer PQ prekey ciphertext, then replace pqss in that session with ss∗ as well.
Reduction B10 outputs as its answer to the IND-CCA challenger the same b′ output by A. When ss∗ is

real, B10 exactly simulates Game 5 to A, whereas when ss∗ is random, it simulates Game 10 to A. Thus

Adv9 ≤ Advind−cca
Π1

(B10) + Adv10

Game 11 (Replace output of KDFRKCK with random). In this game, the challenger replaces the (rk, ck)
output of KDFRKCK with a random bitstring of the same length.

Reduction B11 against PRF security of KDFRKCK in its third argument : Reduction B11 has access to an
oracle O which either evaluates KDFRKCK or is a random function, and must return its guess as to whether
the oracle is real or random.

The reduction behaves similarly to Game 11, except as follows. In πS,s stage [asym0] in the calculation of
(rk, ck), it calls oracle O with inputs 0, ecss, and the session identifier. If the matching session exists at the
peer, then it does the same there. Reduction B11 outputs as its answer to the PRF challenge the same b′

output by A. When O is real, reduction B11 exactly simulates Game 10 since pqss is random, whereas when
O is random, it simulates Game 11 to A. Thus

Adv10 ≤ Advprf3KDFRKCK(B11) + Adv11

25

Conclusion. As of Game 9 and Game 11, πS,s.rk[asym0] and πS,s.ck[out0,0] are indistinguishable from random.
Thus, the probability that the adversary can distinguish πS,s.rk[asym0] and πS,s.ck[out0,0] from random when
valid(S, s, [asym0]) ∧ unrev(S, s, [asym0]) holds is at most

1

q

(
nPnB + nPnSns

2

)
+ n2

PnS

 AdvEUF-CMA
Σ (B4)

+nB min

{
1
q + Advprf1−odh

g,HKDF.Extract(B7) + Advprf1HKDF.Extract(B8) + Advprf1HKDF.Expand(B9),
AdvIND-CCA

Π1
(B10) + Advprf3KDFRKCK(B11)

} 

5.4 Lemma 4: Initial key establishment for the responder

Lemma 4. Consider session πR,r such that πR,r.role = resp. Assume that Σ is EUF-CMA, that HKDF.Expand
and HKDF.Extract are both PRFs in their first argument, and that KDFRKCK is a PRF in its third argument.
Assume that either the PRF-ODH assumption holds for the elliptic curve group with HKDF.Extract in its first
argument, or that Π1 is an IND-CCA-secure KEM. If valid(R, r, [asym0]) ∧ unrev(R, r, [asym0]) holds, then
πR,r.rk[asym0] and πR,r.ck[in0,0] are indistinguishable from random.

Proof.

Game 0 (Original game). This game is the original multi-stage key indistinguishability security experiment
for the PQ3 protocol. Thus

Adv0 = AdvIND
Π,nP,nB,nS,ns

(A)

Game 1 (Require distinct honestly generated DH public keys). In this game, we ensure there is no collision
on any honestly generated DH public keys. The challenger maintains a list of all DH private values generated
during the game; if any DH private value appears twice, the challenger aborts the simulation and the adversary
automatically wins. The maximum number of honestly generated DH key pairs is nPnB + nPnSns and thus

Adv0 ≤
1

q

(
nPnB + nPnSns

2

)
+ Adv1

where q is the order of the group.

Game 2 (Guess index of target session). In this game, the challenger guesses in advance the index (R, r, 0) ∈
{1, . . . , nP} × {1, . . . , nS} × {0} of the session and stage against which the Test query is issued, and aborts if
the guess is incorrect. Thus

Adv1 = nPnSAdv2

Game 3 (Guess index of peer pre-key bundle). In this game, the challenger guesses in advance the index
i ∈ {1, . . . , nB} indicating which of R’s prekey bundles will be used in the target session, and aborts if the
guess is incorrect. Thus

Adv2 = nBAdv3

Game 4 (Guess matching session of target session). In this game, the challenger guesses in advance the index
(S, s, 0) ∈ {1, . . . , nP}×{1, . . . , nS}×{0} of the matching session of the target session, and aborts if the guess
is incorrect. Thus

Adv3 = nPnSAdv4

Game 5 (Abort if forged signature of incoming message). In this game, the challenger aborts if SessionStartR(πR,r, . . .)
accepted the signature on the incoming message, but that message was never signed by party S, and
πR,r.[asym0] accepted before S’s long-term key was revealed. If the abort event occurs, then that signature
constitutes a forgery on the incoming message under key idecvkS .

Reduction B5 against EUF-CMA security of Σ: Reduction B5 receives as input a challenge signature
public key pk∗ and a signing oracle O, and must produce a forgery.

The reduction behaves similarly to Game 5, except as follows. For party S, it uses pk∗ as the long-term
identity key instead of generating a new one. Whenever party S needs to sign something, the reduction uses
oracle O. Suppose the abort event of Game 5 occurs. Note that this implies that RevLongTermKey(S) is not
called. The abort event implies that the signature σ is a valid signature on the incoming protocol message m

26

but this protocol message was never signed by party S. Thus, the protocol message was never queried to the
signing oracle O, so the reduction can return this string and corresponding signature as a winning forgery in
the EUF-CMA game for Σ. Thus

Adv4 ≤ AdvEUF-CMA
Σ (B5) + Adv5

Branch A: elliptic curve security. The proof now branches into two cases: one based on the secrecy of ECDH
shared secrets, one based on the secrecy of KEM shared secrets.

Game 6 (Undo distinct DH public keys for the test session). In this game, the challenger does not abort if
the two DH public keys used in this session (preecpkR,i and rchecpkS,s,1) are the same. This is required since
a later proof step will substitute a DH challenge which could (with small but non-zero probability) have the
two challenge public keys equal. Since the former is honestly generated independently of the latter and the
size of the group is q, we have that

Adv5 =
1

q
+ Adv6

Game 7 (Replace key ext1 derived from first DH shared secret with random). In this game, the challenger
replaces the ext1 value in the call to KDFRKCK involving ecss with a random bitstring of the same length.

Reduction B7 against PRF-ODH security of the group with HKDF.Extract: Reduction B7 receives as input
a DH challenge U = gu, V = gv, and real-or-random value W , and PRF-ODH oracles OU and OV, and must
return its guess of whether W was real or random.

The reduction behaves similarly to Game 7, except as follows. For preecpkR,i, it uses U ; note rev prekey[R, i, ec] =
false by the freshness condition. For rchecpkS,s,1, it uses V ; note rev rchkey[S, s, 1, ec] = false by the freshness
condition. Note that there is a unique session at party S that uses rchecpkS,s,1: it exists because of Game 5,
and it’s unique by Game 1. For ext1 in the call to KDFRKCK in πR,r stage [asym0], use W ; similarly in the
matching session πS,s stage [asym0] if it exists.

In the first execution of AsymRatchet for πS,s, compute ext1 in the first call to KDFRKCK by querying
the PRF-ODH oracle OV with the received peer EC ratchet public key and the salt value unchanged.

Reduction B7 outputs as its answer to the PRF-ODH challenger the same b′ output by A. When W is
real, B7 exactly simulates Game 6 to A, whereas when W is random, it simulates Game 7 to A. Thus

Adv6 ≤ Advprf1−odh
g,HKDF.Extract(B7) + Adv7

Game 8 (Replace key ext2 derived from ext1 with random). In this game, the challenger replaces the ext2
value in the call to KDFRKCK involving ecss with a random bitstring of the same length.

Reduction B8 against PRF security of HKDF.Extract in its first argument : Reduction B8 has access to
an oracle O which either evaluates HKDF.Extract or is a random function, and must return its guess as to
whether the oracle is real or random.

The reduction behaves similarly to Game 8, except as follows. In πR,r stage [asym0] in the calculation
of ext2 inside KDFRKCK, it calls oracle O with the salt argument (either salt = 0 or salt = ss2). If the
matching session exists at the peer, then it does the same there. Reduction B8 outputs as its answer to the
PRF challenge the same b′ output by A. When O is real, reduction B8 exactly simulates Game 7 since ext1
is random, whereas when O is random, it simulates Game 8 to A. Thus

Adv7 ≤ Advprf1HKDF.Extract(B8) + Adv8

Game 9 (Replace key z = (rk, ck) derived from ext2 with random). In this game, the challenger replaces the
z = (rk, ck) value in the call to KDFRKCK involving ecss with a random bitstring of the same length.

Reduction B9 against PRF security of HKDF.Expand in its first argument : Reduction B9 has access to
an oracle O which either evaluates HKDF.Expand or is a random function, and must return its guess as to
whether the oracle is real or random.

The reduction behaves similarly to Game 9, except as follows. In πR,r stage [asym0] in the calculation of
z inside KDFRKCK, it calls oracle O with the given label argument. If the matching session exists at the
peer, then it does the same there. Reduction B9 outputs as its answer to the PRF challenge the same b′

output by A. When O is real, reduction B9 exactly simulates Game 8 since ext2 is random, whereas when O
is random, it simulates Game 9 to A. Thus

Adv8 ≤ Advprf1HKDF.Expand(B9) + Adv9

27

Branch B: post-quantum security

Game 10 (Replace pqss with random value). In this game, the challenger replaces the pqss value with a
random bitstring of the same length.

Reduction B10 against the IND-CCA security of KEM Π1: Reduction B10 receives as input a challenge
KEM public key pk∗, challenge ciphertext ct∗, and real-or-random value ss∗, and decapsulation oracle O[Dec],
and must return its guess of whether ss∗ was real or random.

The reduction behaves similarly to Game 10, except as follows. For prepqpkR,i, it uses pk∗; note
rev prekey[R, i, pqsk] = false by the freshness condition. For pqss in πR,r stage [asym0], it uses ss

∗.
In all honest initiator sessions that use prepqpkR,i other than πS,s, generate the PQ encapsulation honestly.

For prepqctS,s use ct∗; note rev prekey[S, s, pqrnd] = false by the freshness condition.
Reduction B10 outputs as its answer to the IND-CCA challenger the same b′ output by A. When ss∗ is

real, B10 exactly simulates Game 5 to A, whereas when ss∗ is random, it simulates Game 10 to A. Thus

Adv9 ≤ Advind−cca
Π1

(B10) + Adv10

Game 11 (Replace output of KDFRKCK with random). In this game, the challenger replaces the (rk, ck)
output of KDFRKCK involving pqss with a random bitstring of the same length.

Reduction B11 against PRF security of KDFRKCK in its third argument : Reduction B11 has access to an
oracle O which either evaluates KDFRKCK or is a random function, and must return its guess as to whether
the oracle is real or random.

The reduction behaves similarly to Game 11, except as follows. In πR,r stage [asym0] in the calculation of
(rk, ck), it calls oracle O with inputs 0, ecss, and the session identifier. If the matching session exists at the
peer, then it does the same there. Reduction B11 outputs as its answer to the PRF challenge the same b′

output by A. When O is real, reduction B11 exactly simulates Game 10 since pqss is random, whereas when
O is random, it simulates Game 11 to A. Thus

Adv10 ≤ Advprf3KDFRKCK(B11) + Adv11

Conclusion. As of Game 9 and Game 11, πR,r.rk[asym0] and πR,r.ck[in0,0] are indistinguishable from random.
Thus, the probability that the adversary can distinguish these from random when valid(R, r, [asym0]) ∧
unrev(R, r, [asym0]) holds is at most

1

q

(
nPnB + nPnSns

2

)
+ n2

Pn
2
SnB

 AdvEUF-CMA
Σ (B5)

+min

{
1
q + Advprf1−odh

g,HKDF.Extract(B7) + Advprf1HKDF.Extract(B8) + Advprf1HKDF.Expand(B9),
AdvIND-CCA

Π1
(B10) + Advprf3KDFRKCK(B11)

} 

5.5 Lemmas 5 and 6: Asymmetric ratchet

Recall that during the PQ3 asymmetric ratchet in Figure 6, the asymmetric ratchet actually advances two
steps: one step for the incoming chain, one step for the outgoing chain. We break the proof up for the
security of the asymmetric ratchet into two lemmas: Lemma 5 covering the first half of the asymmetric
ratchet (deriving the next root key and the chain key for the incoming chain), and Lemma 6 covering the
second half of the asymmetric ratchet (deriving the subsequent root key and the chain key for the outgoing
chain).

Lemma 5. Consider session πP,p stage [asymj], where [asymj] is the first of the two stages in AsymRatchet.
(In other words, either πP,p.role = init and j > 0 odd, or πP,p.role = resp and j > 0 even.) Assume that
Σ is EUF-CMA, that HKDF.Expand and HKDF.Extract are both PRFs in their first argument, and that
KDFRKCK is a PRF in its first and third arguments. Assume that either the PRF-ODH assumption holds
for the elliptic curve group with HKDF.Extract in its first argument, or that Π2 is an IND-CCA-secure KEM.
If valid(P, p, [asymj]) ∧ unrev(P, p, [asymj]) holds, then πP,p.rk[asymj] and πP,p.ck[inj,0] are indistinguishable
from random.

28

Proof. Since unrev(P, p, [asymj]) holds, then either unrevstate(P, p, [asymj] ∧ unrev(P, p, [asymj−1]) holds or(
¬rev rchkey[P, p, j, ec] ∧ unrevpeer(P, p, j + 1, ec) ∧ ¬rev rchkey[P, p, j, pqsk] ∧ unrevpeer(P, p, j, pqrnd)

)
holds.

Game 0 (Starting game). This game is the last game in the proof of Lemma 3 or Lemma 6 as appropriate.
Define its advantage as Adv0.

Game 1 (Abort if forged signature of incoming message). In this game, the challenger aborts if AsymRatchet
accepted the signature on the incoming message, but that message was never signed by peer P ′ = πP,p.peerid,
and πP,p.[asymj] accepted before P ′’s long-term key was revealed. If the abort event occurs, then that
signature constitutes a forgery on the incoming message under key idecvkS .

Reduction B1 against EUF-CMA security of Σ: Reduction B1 receives as input a challenge signature
public key pk∗ and a signing oracle O, and must produce a forgery.

The reduction behaves similarly to Game 1, except as follows. For party P ′, it uses pk∗ as the long-term
identity key instead of generating a new one. Whenever party P ′ needs to sign something, the reduction uses
oracle O. Suppose the abort event of Game 1 occurs. Note that this implies that RevLongTermKey(P ′) is not
called. The abort event implies that the signature σ is a valid signature on the incoming protocol message m
but this protocol message was never signed by party P ′. Thus, the protocol message was never queried to the
signing oracle O, so the reduction can return this string and corresponding signature as a winning forgery in
the EUF-CMA game for Σ. Thus

Adv0 ≤ AdvEUF-CMA
Σ (B1) + Adv1

Case A: Suppose first that unrevstate(P, p, [asymj]∧unrev(P, p, [asymj−1]) holds. Note that valid(P, p, [asymj−1])
also holds. By Lemma 3 or Lemma 6, πP,p.rk[asymj−1] is indistinguishable from random.

Game 2 (Replace output of KDFRKCK with random). In this game, the challenger replaces the (rk, ck)
output of the first call to KDFRKCK in AsymRatchet for πP,p stage [asymj] with a random bitstring of the
same length.

Reduction B2 against PRF security of KDFRKCK in its first argument : Reduction B2 has access to an
oracle O which either evaluates KDFRKCK or is a random function, and must return its guess as to whether
the oracle is real or random.

The reduction behaves similarly to Game 2, except as follows. In πP,p stage [asymj] in the calculation of
(rk, ck), it calls oracle O with inputs ecss, pqss, and the session identifier πP,p.sid[asymj]. If the matching
session exists at the peer, then it does the same there. Note that this stage (and the matching session
at the peer, if it exists) is the only occurrence of this session identifier πP,p.sid[asymj]. It is unique at the
session owner due to Lemma 2, and similarly at the honest peer. Reduction B2 outputs as its answer to
the PRF challenge the same b′ output by A. When O is real, reduction B2 exactly simulates Game 1 since
πP,p.rk[asymj−1] is random and unrevealed, whereas when O is random, it simulates Game 2 to A. Thus

Adv1 ≤ Advprf1KDFRKCK(B2) + Adv2

Case B: Now suppose that
(
¬rev rchkey[P, p, j, ec] ∧ unrevpeer(P, p, j + 1, ec) ∧ ¬rev rchkey[P, p, j, pqsk] ∧

unrevpeer(P, p, j, pqrnd)
)
holds.

Branch A: elliptic curve security. The proof now branches into two cases: one based on the secrecy of ECDH
shared secrets, one based on the secrecy of KEM shared secrets.

Game 3 (Undo distinct DH public keys for the test session). In this game, the challenger does not abort if
the two DH public keys used in this stage (rchecpkP ′,p′,j+1 and rchecpkP,p,j) are the same. This is required
since a later proof step will substitute a DH challenge which could (with small but non-zero probability) have
the two challenge public keys equal. Since the former is honestly generated independently of the latter and
the size of the group is q, we have that

Adv2 =
1

q
+ Adv3

Game 4 (Replace key ext1 derived from first DH shared secret with random). In this game, the challenger
replaces the ext1 value in the call to KDFRKCK involving ecss with a random bitstring of the same length.

29

Reduction B4 against PRF-ODH security of the group with HKDF.Extract: Reduction B4 receives as input
a DH challenge U = gu, V = gv, and real-or-random value W , and PRF-ODH oracles OU and OV, and must
return its guess of whether W was real or random.

The reduction behaves similarly to Game 4, except as follows. For rchecpkP ′,p′,j+1, it uses U ; note
rev rchkey[P ′, p′, j+1, ec] = false by the freshness condition. For rchecpkP,p,j , it uses V ; note rev rchkey[P, p, j, ec] =
false by the freshness condition. Note that there is a unique session at party P that uses rchecpkP,p,j : it
exists because of Game 1, and it’s unique by Game 1. For ext1 in the call to KDFRKCK in πP,p stage [asymj],
use W ; similarly in the matching session πP ′,p′ stage [asymj+1] if it exists.

In the previous execution of AsymRatchet for πP,p, compute ext1 in the second call to KDFRKCK by
querying the PRF-ODH oracle OV with the received peer EC ratchet public key and the salt value unchanged.

Reduction B4 outputs as its answer to the PRF-ODH challenger the same b′ output by A. When W is
real, B4 exactly simulates Game 3 to A, whereas when W is random, it simulates Game 4 to A. Thus

Adv3 ≤ Advprf1−odh
g,HKDF.Extract(B4) + Adv4

Game 5 (Replace key ext2 derived from ext1 with random). In this game, the challenger replaces the ext2
value in the call to KDFRKCK involving ecss with a random bitstring of the same length.

Reduction B5 against PRF security of HKDF.Extract in its first argument : Reduction B5 has access to
an oracle O which either evaluates HKDF.Extract or is a random function, and must return its guess as to
whether the oracle is real or random.

The reduction behaves similarly to Game 5, except as follows. In πP,p stage [asymj] in the calculation
of ext2 inside KDFRKCK, it calls oracle O with the salt argument (either salt = 0 or salt = ss2). If the
matching session exists at the peer, then it does the same there. Reduction B5 outputs as its answer to the
PRF challenge the same b′ output by A. When O is real, reduction B5 exactly simulates Game 4 since ext1
is random, whereas when O is random, it simulates Game 5 to A. Thus

Adv4 ≤ Advprf1HKDF.Extract(B5) + Adv5

Game 6 (Replace key z = (rk, ck) derived from ext2 with random). In this game, the challenger replaces the
z = (rk, ck) value in the call to KDFRKCK involving ecss with a random bitstring of the same length.

Reduction B6 against PRF security of HKDF.Expand in its first argument : Reduction B6 has access to
an oracle O which either evaluates HKDF.Expand or is a random function, and must return its guess as to
whether the oracle is real or random.

The reduction behaves similarly to Game 6, except as follows. In πP,p stage [asymj] in the calculation of
z inside KDFRKCK, it calls oracle O with the given label argument. If the matching session exists at the
peer, then it does the same there. Reduction B6 outputs as its answer to the PRF challenge the same b′

output by A. When O is real, reduction B6 exactly simulates Game 5 since ext2 is random, whereas when O
is random, it simulates Game 6 to A. Thus

Adv5 ≤ Advprf1HKDF.Expand(B6) + Adv6

Branch B: post-quantum security

Game 7 (Replace pqss with random value). In this game, the challenger replaces the pqss value with a random
bitstring of the same length.

Reduction B7 against the IND-CCA security of KEM Π2: Reduction B7 receives as input a challenge
KEM public key pk∗, challenge ciphertext ct∗, and real-or-random value ss∗, and decapsulation oracle O[Dec],
and must return its guess of whether ss∗ was real or random.

The reduction behaves similarly to Game 7, except as follows. For rchpqpkP,p,j , it uses pk∗; note
rev rchkey[P, p, j, pqsk] = false by the freshness condition. For pqss in πP,p stage [asymj], it uses ss

∗.
In all honest sessions at the peer that use rchpqpkP,p,j other than the matching session, generate the

PQ encapsulation honestly. For rchpqctP ′,p′,j use ct∗; note rev rchkey[P ′, p′, j, pqrnd] = false by the freshness
condition.

Reduction B7 outputs as its answer to the IND-CCA challenger the same b′ output by A. When ss∗ is
real, B7 exactly simulates Game 1 to A, whereas when ss∗ is random, it simulates Game 7 to A. Thus

Adv6 ≤ Advind−cca
Π2

(B7) + Adv7

30

Game 8 (Replace output of KDFRKCK with random). In this game, the challenger replaces the (rk, ck)
output of KDFRKCK involving pqss with a random bitstring of the same length.

Reduction B8 against PRF security of KDFRKCK in its third argument : Reduction B8 has access to an
oracle O which either evaluates KDFRKCK or is a random function, and must return its guess as to whether
the oracle is real or random.

The reduction behaves similarly to Game 8, except as follows. In πP,p stage [asymj] in the calculation of
(rk, ck), it calls oracle O with inputs πP,p.rk[asymj−1], ecss, and the session identifier. If the matching session
exists at the peer, then it does the same there. Reduction B8 outputs as its answer to the PRF challenge the
same b′ output by A. When O is real, reduction B8 exactly simulates Game 7 since pqss is random, whereas
when O is random, it simulates Game 8 to A. Thus

Adv7 ≤ Advprf3KDFRKCK(B8) + Adv8

Conclusion. As of Game 6 and Game 8, πP,p.rk[asymj] and πP,p.ck[inj,0] are indistinguishable from random.
Thus, the probability that the adversary can distinguish these from random when valid(P, p, [asymj]) ∧
unrev(P, p, [asymj]) holds is at most

AdvEUF-CMA
Σ (B1)

+max

{
Advprf1KDFRKCK(B2),min

{
1
q + Advprf1−odh

g,HKDF.Extract(B4) + Advprf1HKDF.Extract(B5) + Advprf1HKDF.Expand(B6),
AdvIND-CCA

Π2
(B7) + Advprf3KDFRKCK(B8)

}}

Lemma 6. Consider session πP,p stage [asymj+1], where [asymj+1] is the second of the two stages in
AsymRatchet. (In other words, either πP,p.role = init and j > 0 odd, or πP,p.role = resp and j > 0 even.)
Assume that Σ is EUF-CMA, that HKDF.Expand and HKDF.Extract are both PRFs in their first argument,
and that KDFRKCK is a PRF in its first and third arguments. Assume that either the PRF-ODH assumption
holds for the elliptic curve group with HKDF.Extract in its first argument, or that Π2 is an IND-CCA-secure
KEM. If valid(P, p, [asymj+1]) ∧ unrev(P, p, [asymj+1]) holds, then πP,p.rk[asymj+1] and πP,p.ck[outj+1,0] are
indistinguishable from random.

Proof. Since unrev(P, p, [asymj]) holds, then either unrevstate(P, p, [asymj] ∧ unrev(P, p, [asymj−1]) holds or(
¬rev rchkey[P, p, j, ec] ∧ unrevpeer(P, p, j + 1, ec) ∧ ¬rev rchkey[P, p, j, pqsk] ∧ unrevpeer(P, p, j, pqrnd)

)
holds.

Game 0 (Starting game). This game is the last game in the proof of Lemma 4 or Lemma 5 as appropriate.
Define its advantage as Adv0.

Case A: Suppose first that unrevstate(P, p, [asymj+1]∧unrev(P, p, [asymj]) holds. Note that valid(P, p, [asymj])
also holds. By Lemma 4 or Lemma 5, πP,p.rk[asymj] is indistinguishable from random.

Game 1 (Replace output of KDFRKCK with random). In this game, the challenger replaces the (rk, ck)
output of the second call to KDFRKCK in AsymRatchet for πP,p stage [asymj+1] with a random bitstring of
the same length.

Reduction B1 against PRF security of KDFRKCK in its first argument : Reduction B1 has access to an
oracle O which either evaluates KDFRKCK or is a random function, and must return its guess as to whether
the oracle is real or random.

The reduction behaves similarly to Game 1, except as follows. In πP,p stage [asymj+1] in the calculation of
(rk, ck), it calls oracle O with inputs ecss′, pqss′, and the session identifier πP,p.sid[asymj+1]. If the matching
session exists at the peer, then it does the same there. Note that this stage (and the matching session at
the peer, if it exists) is the only occurrence of this session identifier πP,p.sid[asymj+1]. It is unique at the
session owner due to Lemma 2, and similarly at the honest peer. Reduction B1 outputs as its answer to
the PRF challenge the same b′ output by A. When O is real, reduction B1 exactly simulates Game 0 since
πP,p.rk[asymj] is random and unrevealed, whereas when O is random, it simulates Game 1 to A. Thus

Adv0 ≤ Advprf1KDFRKCK(B1) + Adv1

31

Case B: Now suppose that
(
¬rev rchkey[P, p, j + 2, ec] ∧ unrevpeer(P, p, j + 1, ec) ∧ ¬rev rchkey[P, p, j +

1, pqrnd] ∧ unrevpeer(P, p, j + 1, pqsk)
)
holds.

Branch A: elliptic curve security. The proof now branches into two cases: one based on the secrecy of ECDH
shared secrets, one based on the secrecy of KEM shared secrets.

Game 2 (Undo distinct DH public keys for the test session). In this game, the challenger does not abort if the
two DH public keys used in this stage (rchecpkP ′,p′,j+1 and rchecpkP,p,j+2) are the same. This is required
since a later proof step will substitute a DH challenge which could (with small but non-zero probability) have
the two challenge public keys equal. Since the former is honestly generated independently of the latter and
the size of the group is q, we have that

Adv1 =
1

q
+ Adv2

Game 3 (Replace key ext1 derived from first DH shared secret with random). In this game, the challenger
replaces the ext1 value in the call to KDFRKCK involving ecss′ with a random bitstring of the same length.

Reduction B3 against PRF-ODH security of the group with HKDF.Extract: Reduction B3 receives as input
a DH challenge U = gu, V = gv, and real-or-random value W , and PRF-ODH oracles OU and OV, and must
return its guess of whether W was real or random.

The reduction behaves similarly to Game 3, except as follows. For rchecpkP ′,p′,j+1, it uses U ; note
rev rchkey[P ′, p′, j+1, ec] = false by the freshness condition. For rchecpkP,P,j+1, it uses V ; note rev rchkey[P, p, j+
2, ec] = false by the freshness condition. Note that there is a unique session at party P that uses rchecpkP,p,j+2:
it exists because of Game 1, and it’s unique by Game 1. For ext1 in the call to KDFRKCK in πP,p stage
[asymj+1], use W ; similarly in the matching session πP ′,p′ stage [asymj+1] if it exists.

In the next execution of AsymRatchet for πP,p, compute ext1 in the first call to KDFRKCK by querying
the PRF-ODH oracle OV with the received peer EC ratchet public key and the salt value unchanged.

Reduction B3 outputs as its answer to the PRF-ODH challenger the same b′ output by A. When W is
real, B3 exactly simulates Game 2 to A, whereas when W is random, it simulates Game 3 to A. Thus

Adv2 ≤ Advprf1−odh
g,HKDF.Extract(B3) + Adv3

Game 4 (Replace key ext2 derived from ext1 with random). In this game, the challenger replaces the ext2
value in the call to KDFRKCK involving ecss′ with a random bitstring of the same length.

Reduction B4 against PRF security of HKDF.Extract in its first argument : Reduction B4 has access to
an oracle O which either evaluates HKDF.Extract or is a random function, and must return its guess as to
whether the oracle is real or random.

The reduction behaves similarly to Game 4, except as follows. In πP,p stage [asymj+1] in the calculation
of ext2 inside KDFRKCK, it calls oracle O with the salt argument (either salt = 0 or salt = ss2). If the
matching session exists at the peer, then it does the same there. Reduction B4 outputs as its answer to the
PRF challenge the same b′ output by A. When O is real, reduction B4 exactly simulates Game 3 since ext1
is random, whereas when O is random, it simulates Game 4 to A. Thus

Adv3 ≤ Advprf1HKDF.Extract(B4) + Adv4

Game 5 (Replace key z = (rk, ck) derived from ext2 with random). In this game, the challenger replaces the
z = (rk, ck) value in the call to KDFRKCK involving ecss′ with a random bitstring of the same length.

Reduction B5 against PRF security of HKDF.Expand in its first argument : Reduction B5 has access to
an oracle O which either evaluates HKDF.Expand or is a random function, and must return its guess as to
whether the oracle is real or random.

The reduction behaves similarly to Game 5, except as follows. In πP,p stage [asymj+1] in the calculation
of z inside KDFRKCK, it calls oracle O with the given label argument. If the matching session exists at the
peer, then it does the same there. Reduction B5 outputs as its answer to the PRF challenge the same b′

output by A. When O is real, reduction B5 exactly simulates Game 4 since ext2 is random, whereas when O
is random, it simulates Game 5 to A. Thus

Adv4 ≤ Advprf1HKDF.Expand(B5) + Adv5

32

Branch B: post-quantum security

Game 6 (Replace pqss′ with random value). In this game, the challenger replaces the pqss′ value with a
random bitstring of the same length.

Reduction B6 against the IND-CCA security of KEM Π2: Reduction B6 receives as input a challenge
KEM public key pk∗, challenge ciphertext ct∗, and real-or-random value ss∗, and decapsulation oracle O[Dec],
and must return its guess of whether ss∗ was real or random.

The reduction behaves similarly to Game 6, except as follows. For rchpqpkP ′,p′,j+1, it uses pk∗; note
rev rchkey[P ′, p′, j + 1, pqsk] = false by the freshness condition. For pqss in πP,p stage [asymj+1], it uses ss

∗.
In all other honest sessions that use rchpqpkP ′,p′,j+1, generate the PQ encapsulation honestly. For

rchpqctP,p,j+1 use ct∗; note rev rchkey[P, p, j + 1, pqrnd] = false by the freshness condition.
Reduction B6 outputs as its answer to the IND-CCA challenger the same b′ output by A. When ss∗ is

real, B6 exactly simulates Game 0 to A, whereas when ss∗ is random, it simulates Game 6 to A. Thus

Adv5 ≤ Advind−cca
Π2

(B6) + Adv6

Game 7 (Replace output of KDFRKCK with random). In this game, the challenger replaces the (rk, ck)
output of KDFRKCK involving pqss′ with a random bitstring of the same length.

Reduction B7 against PRF security of KDFRKCK in its third argument : Reduction B7 has access to an
oracle O which either evaluates KDFRKCK or is a random function, and must return its guess as to whether
the oracle is real or random.

The reduction behaves similarly to Game 7, except as follows. In πP,p stage [asymj+1] in the calculation of
(rk, ck), it calls oracle O with inputs πP,p.rk[asymj], ecss

′, and the session identifier. If the matching session
exists at the peer, then it does the same there. Reduction B7 outputs as its answer to the PRF challenge the
same b′ output by A. When O is real, reduction B7 exactly simulates Game 6 since pqss′ is random, whereas
when O is random, it simulates Game 7 to A. Thus

Adv6 ≤ Advprf3KDFRKCK(B7) + Adv7

Conclusion. As of Game 5 and Game 7, πP,p.rk[asymj+1] and πP,p.ck[outj+1,0] are indistinguishable from ran-
dom. Thus, the probability that the adversary can distinguish these from random when valid(P, p, [asymj+1])∧
unrev(P, p, [asymj+1]) holds is at most

max

{
Advprf1KDFRKCK(B1),min

{
1
q + Advprf1−odh

g,HKDF.Extract(B3) + Advprf1HKDF.Extract(B4) + Advprf1HKDF.Expand(B5),
AdvIND-CCA

Π2
(B6) + Advprf3KDFRKCK(B7)

}}

5.6 Lemmas 7 and 8: Symmetric ratchet

Lemma 7. Consider session πP,p stage [chainj,0] with chain ∈ {in, out}. Assume that HKDF.Expand is a
PRF in its first argument. If valid(P, p, [chainj,0]) ∧ unrev(P, p, [chainj,0]) holds, then πP,p.mk[chainj,0] and
πP,p.ck[chainj,1] are indistinguishable from random.

Proof. Since unrev(P, p, [chainj,0]) holds, then unrev(P, p, [asymj]) holds as well. By Lemma 5 or Lemma 6,
πP,p.ck[chainj,0] is indistinguishable from random.

Since unrevstate(P, p, chain[j, 0]), there has been no reveal of intermediate key πP,p.ck[chainj,0] (including
at the partner session, if it exists). Thus πP,p.ck[chainj,0] remains unknown to the adversary.

Game 0 (Starting game). This game is the last game in the proof of Lemma 5 or Lemma 6 as appropriate.
Define its advantage as Adv0.

Game 1 (Replace output of HKDF.Expand with random.). In this game, the challenger replaces the values
πP,p.mk[chainj,0] and πP,p.ck[chainj,1] with random bitstrings of the same length.

Reduction B1 against the PRF security of HKDF.Expand in its first argument : Reduction B1 has access
to an oracle O which either evaluates HKDF.Expand or is a random function, and must return its guess as to
whether the oracle is real or random.

33

The reduction behaves similarly to Game 0, except as follows. In the execution of SymRatchet for
πP,p stage [chainj,0], it sets πP,p.mk[chainj,0] by querying its oracle O on labelmkderivation and it sets
πP,p.ck[chainj,1] by querying its oracle O on labelckderivation.

Reduction B1 outputs as its answer to the PRF challenge the same b′ output by A. When O is real,
reduction B1 exactly simulates Game 0 since πP,p.ck[chainj,0] is random, whereas when O is random, it
simulates Game 1 to A. Thus

Adv0 ≤ Advprf1HKDF.Expand(B1) + Adv1

Conclusion. As of Game 1, πP,p.mk[chainj,0] and πP,p.ck[chainj,1] are indistinguishable from random.
Thus, the probability that the adversary can distinguish these from random when valid(P, p, [chainj,0]) ∧
unrev(P, p, [chainj,0]) holds is at most the upper-bound found in Lemma 5 or Lemma 6 plus

Advprf1HKDF.Expand(B1)

Lemma 8. Consider session πP,p stage [chainj,ℓ] with chainin{in, out} and ℓ > 0. Assume that HKDF.Expand
is a PRF in its first argument. If valid(P, p, [chainj,ℓ]) ∧ unrev(P, p, [chainj,ℓ]) holds, then πP,p.mk[chainj,ℓ]
and πP,p.ck[chainj,ℓ+1] are indistinguishable from random.

Proof. Since unrev(P, p, [chainj,ℓ]) holds, then unrev(P, p, [chainj,ℓ−1]) holds as well. By Lemma 7, πP,p.ck[chainj,1]
is indistinguishable from random.

Since unrevstate(P, p, chain[j, ℓ]), there has been no reveal of intermediate key πP,p.ck[chainj,ℓ] (including
at the partner session, if it exists). Thus πP,p.ck[chainj,ℓ] remains unknown to the adversary.

Game 0 (Starting game). This game is the last game in the proof of Lemma 7. Define its advantage as Adv0.

Game 1 (Replace output of HKDF.Expand with random.). In this game, the challenger replaces the values
πP,p.mk[chainj,ℓ] and πP,p.ck[chainj,ℓ+1] with random bitstrings of the same length.

Reduction B1 against the PRF security of HKDF.Expand in its first argument : Reduction B1 has access
to an oracle O which either evaluates HKDF.Expand or is a random function, and must return its guess as to
whether the oracle is real or random.

The reduction behaves similarly to Game 0, except as follows. In the execution of SymRatchet for πP,p stage
[chainj,ℓ], it sets πP,p.mk[chainj,ℓ] by querying its oracle O on labelmkderivation and it sets πP,p.ck[chainj,ℓ+1]
by querying its oracle O on labelckderivation.

Reduction B1 outputs as its answer to the PRF challenge the same b′ output by A. When O is real,
reduction B1 exactly simulates Game 0 since πP,p.ck[chainj,ℓ] is random, whereas when O is random, it
simulates Game 1 to A. Thus

Adv0 ≤ Advprf1HKDF.Expand(B1) + Adv1

Conclusion. As of Game 1, πP,p.mk[chainj,ℓ] and πP,p.ck[chainj,ℓ+1] are indistinguishable from random.
Thus, the probability that the adversary can distinguish these from random when valid(P, p, [chainj,ℓ]) ∧
unrev(P, p, [chainj,ℓ]) holds is at most the upper-bound found in Lemma 7 plus

Advprf1HKDF.Expand(B1)

34

References

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security notions, proofs,
and modularization for the Signal protocol. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 129–158. Springer, Heidelberg, May
2019. doi:10.1007/978-3-030-17653-2_5.

[ACJM20] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Continuous group key agreement
with active security. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II,
volume 12551 of LNCS, pages 261–290. Springer, Heidelberg, November 2020. doi:10.1007/
978-3-030-64378-2_10.

[App23] Apple Security Engineering and Architecture. Advancing iMessage security: iMes-
sage contact key verification, October 2023. URL: https://security.apple.com/blog/

imessage-contact-key-verification/.

[BBL+23] Olivier Blazy, Ioana Boureanu, Pascal Lafourcade, Cristina Onete, and Léo Robert. How fast
do you heal? a taxonomy for post-compromise security in secure-channel establishment. In
Proceedings of the 32nd USENIX Conference on Security Symposium, 2023.

[BBR+23] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad Omara, and Katriel
Cohn-Gordon. The Messaging Layer Security (MLS) Protocol. RFC 9420, July 2023. URL:
https://www.rfc-editor.org/info/rfc9420, doi:10.17487/RFC9420.

[BFG+20] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Douglas Stebila.
Towards post-quantum security for Signal’s X3DH handshake. In Orr Dunkelman, Michael
J. Jacobson Jr., and Colin O’Flynn, editors, SAC 2020, volume 12804 of LNCS, pages 404–430.
Springer, Heidelberg, October 2020. doi:10.1007/978-3-030-81652-0_16.

[BFG+22a] Alexander Bienstock, Jaiden Fairoze, Sanjam Garg, Pratyay Mukherjee, and Srinivasan Raghu-
raman. A more complete analysis of the Signal double ratchet algorithm. In Yevgeniy Dodis
and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 784–813.
Springer, Heidelberg, August 2022. doi:10.1007/978-3-031-15802-5_27.

[BFG+22b] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas Stebila. Post-
quantum asynchronous deniable key exchange and the Signal handshake. In Goichiro Hanaoka,
Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part II, volume 13178 of LNCS, pages
3–34. Springer, Heidelberg, March 2022. doi:10.1007/978-3-030-97131-1_1.

[BFGJ17] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. PRF-ODH: Relations,
instantiations, and impossibility results. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part III, volume 10403 of LNCS, pages 651–681. Springer, Heidelberg, August
2017. doi:10.1007/978-3-319-63697-9_22.

[BGB04] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-Record communication, or, why not to
use PGP. In Proc. 2004 ACM Workshop on Privacy in the Electronic Society (WPES), page
77–84. ACM, October 2004. doi:10.1145/1029179.1029200.

[BJK23] Karthikean Barghavan, Charlie Jacomme, and Franziskus Kiefer. Formal analysis of the PQXDH
protocol, December 2023. URL: https://github.com/Inria-Prosecco/pqxdh-analysis.

[BMS19] Colin Boyd, Anish Mathuria, and Douglas Stebila. Protocols for Authentication and Key
Establishment. Information Security and Cryptography. Springer, second edition, 2019. doi:
10.1007/978-3-662-58146-9.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R.
Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer, Heidelberg, August
1994. doi:10.1007/3-540-48329-2_21.

35

https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10
https://security.apple.com/blog/imessage-contact-key-verification/
https://security.apple.com/blog/imessage-contact-key-verification/
https://www.rfc-editor.org/info/rfc9420
https://doi.org/10.17487/RFC9420
https://doi.org/10.1007/978-3-030-81652-0_16
https://doi.org/10.1007/978-3-031-15802-5_27
https://doi.org/10.1007/978-3-030-97131-1_1
https://doi.org/10.1007/978-3-319-63697-9_22
https://doi.org/10.1145/1029179.1029200
https://github.com/Inria-Prosecco/pqxdh-analysis
https://doi.org/10.1007/978-3-662-58146-9
https://doi.org/10.1007/978-3-662-58146-9
https://doi.org/10.1007/3-540-48329-2_21

[CCD+20] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila. A
formal security analysis of the Signal messaging protocol. Journal of Cryptology, 33(4):1914–1983,
October 2020. doi:10.1007/s00145-020-09360-1.

[CCG16] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. On post-compromise security. In
Michael Hicks and Boris Köpf, editors, CSF 2016 Computer Security Foundations Symposium,
pages 164–178. IEEE Computer Society Press, 2016. doi:10.1109/CSF.2016.19.

[CGCD+17] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila. A
formal security analysis of the Signal messaging protocol. In Proc. IEEE European Symposium
on Security and Privacy (EuroS&P) 2017. IEEE, April 2017. doi:10.1109/EuroSP.2017.27.

[CJSV22] Ran Canetti, Palak Jain, Marika Swanberg, and Mayank Varia. Universally composable end-
to-end secure messaging. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part II, volume 13508 of LNCS, pages 3–33. Springer, Heidelberg, August 2022. doi:10.1007/
978-3-031-15979-4_1.

[DFGS15] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic
analysis of the TLS 1.3 handshake protocol candidates. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, ACM CCS 2015, pages 1197–1210. ACM Press, October 2015.
doi:10.1145/2810103.2813653.

[DG22] Samuel Dobson and Steven D. Galbraith. Post-quantum Signal key agreement from SIDH. In
Jung Hee Cheon and Thomas Johansson, editors, PQCRYPTO 2022, volume 13512 of LNCS,
pages 422–450. Springer, 2022. doi:10.1007/978-3-031-17234-2_20.

[DGK06] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Deniable authentication and key
exchange. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
ACM CCS 2006, pages 400–409. ACM Press, October / November 2006. doi:10.1145/1180405.
1180454.

[DH23] Benjamin Dowling and Britta Hale. Authenticated continuous key agreement: Active MitM
detection and prevention. Cryptology ePrint Archive, Report 2023/228, 2023. https://eprint.
iacr.org/2023/228.

[DHRR22] Benjamin Dowling, Eduard Hauck, Doreen Riepel, and Paul Rösler. Strongly anonymous
ratcheted key exchange. In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022,
Part III, volume 13793 of LNCS, pages 119–150. Springer, Heidelberg, December 2022. doi:
10.1007/978-3-031-22969-5_5.

[DV19] F. Betül Durak and Serge Vaudenay. Bidirectional asynchronous ratcheted key agreement
with linear complexity. In Nuttapong Attrapadung and Takeshi Yagi, editors, IWSEC 19,
volume 11689 of LNCS, pages 343–362. Springer, Heidelberg, August 2019. doi:10.1007/

978-3-030-26834-3_20.

[FG14] Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of Google’s QUIC
protocol. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages
1193–1204. ACM Press, November 2014. doi:10.1145/2660267.2660308.

[FHKP13] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. Non-
interactive key exchange. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013,
volume 7778 of LNCS, pages 254–271. Springer, Heidelberg, February / March 2013. doi:

10.1007/978-3-642-36362-7_17.

[Gün90] Christoph G. Günther. An identity-based key-exchange protocol. In Jean-Jacques Quisquater
and Joos Vandewalle, editors, EUROCRYPT’89, volume 434 of LNCS, pages 29–37. Springer,
Heidelberg, April 1990. doi:10.1007/3-540-46885-4_5.

36

https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1007/978-3-031-15979-4_1
https://doi.org/10.1007/978-3-031-15979-4_1
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1007/978-3-031-17234-2_20
https://doi.org/10.1145/1180405.1180454
https://doi.org/10.1145/1180405.1180454
https://eprint.iacr.org/2023/228
https://eprint.iacr.org/2023/228
https://doi.org/10.1007/978-3-031-22969-5_5
https://doi.org/10.1007/978-3-031-22969-5_5
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/3-540-46885-4_5

[HBD+22] Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer,
Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M. Lauridsen,
Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe,
Jean-Philippe Aumasson, Bas Westerbaan, and Ward Beullens. SPHINCS+. Technical report,
National Institute of Standards and Technology, 2022. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022.

[HKKP21] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. An efficient and
generic construction for Signal’s handshake (X3DH): Post-quantum, state leakage secure, and
deniable. In Juan Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages 410–440.
Springer, Heidelberg, May 2021. doi:10.1007/978-3-030-75248-4_15.

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE
in the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 273–293. Springer, Heidelberg, August 2012. doi:10.1007/

978-3-642-32009-5_17.

[JMM19] Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting: Almost-optimal
guarantees for secure messaging. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 159–188. Springer, Heidelberg, May
2019. doi:10.1007/978-3-030-17653-2_6.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In Tal
Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer, Heidelberg,
August 2010. doi:10.1007/978-3-642-14623-7_34.

[KS23] Ehren Kret and Rolve Schmidt. The PQXDH key agreement protocol, October 2023. URL:
https://signal.org/docs/specifications/pqxdh/.

[KSH23] Panos Kampanakis, Douglas Stebila, and Torben Hansen. Post-quantum hybrid key exchange in
SSH. https://www.ietf.org/archive/id/draft-kampanakis-curdle-ssh-pq-ke-01.txt,
April 2023. Internet-Draft.

[LDK+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler,
Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Technical report, National Insti-
tute of Standards and Technology, 2022. available at https://csrc.nist.gov/Projects/

post-quantum-cryptography/selected-algorithms-2022.

[MCYR17] Kevin Milner, Cas Cremers, Jiangshan Yu, and Mark Ryan. Automatically detecting the misuse
of secrets: Foundations, design principles, and applications. In Boris Köpf and Steve Chong,
editors, CSF 2017 Computer Security Foundations Symposium, pages 203–216. IEEE Computer
Society Press, 2017. doi:10.1109/CSF.2017.21.

[MP16] Moxie Marlinspike and Trevor Perrin. The X3DH key agreement protocol, November 2016.
URL: https://www.signal.org/docs/specifications/x3dh/.

[Nat23] National Institute of Standards and Technology. Module-lattice-based key-encapsulation mecha-
nism standard, August 2023. FIPS 203 (initial public draft). doi:10.6028/NIST.FIPS.203.ipd.

[PFH+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON.
Technical report, National Institute of Standards and Technology, 2022. available at https:
//csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.

[PM16] Trevor Perrin and Moxie Marlinspike. The double ratchet algorithm, November 2016. URL:
https://www.signal.org/docs/specifications/doubleratchet/.

37

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-030-75248-4_15
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-642-14623-7_34
https://signal.org/docs/specifications/pqxdh/
https://www.ietf.org/archive/id/draft-kampanakis-curdle-ssh-pq-ke-01.txt
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1109/CSF.2017.21
https://www.signal.org/docs/specifications/x3dh/
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://www.signal.org/docs/specifications/doubleratchet/

[PR18] Bertram Poettering and Paul Rösler. Towards bidirectional ratcheted key exchange. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS,
pages 3–32. Springer, Heidelberg, August 2018. doi:10.1007/978-3-319-96884-1_1.

[SAB+20] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Le-
point, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien Stehlé.
CRYSTALS-KYBER. Technical report, National Institute of Standards and Technol-
ogy, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and Jintai Ding.
CRYSTALS-KYBER. Technical report, National Institute of Standards and Technol-
ogy, 2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/

selected-algorithms-2022.

[SFG23] Douglas Stebila, Scott Fluhrer, and Shay Gueron. Hybrid key exchange in TLS 1.3. https://
www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-08.txt, August 2023. Internet-
Draft.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
35th FOCS, pages 124–134. IEEE Computer Society Press, November 1994. doi:10.1109/SFCS.
1994.365700.

[Sig16] Signal. Technical information, 2016. Accessed December 10, 2023. URL: https://www.signal.
org/docs/.

[VGIK20] Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo Krawczyk. On the crypto-
graphic deniability of the Signal protocol. In Mauro Conti, Jianying Zhou, Emiliano Casalicchio,
and Angelo Spognardi, editors, ACNS 20, Part II, volume 12147 of LNCS, pages 188–209.
Springer, Heidelberg, October 2020. doi:10.1007/978-3-030-57878-7_10.

[Zim95] Philip Zimmermann. The Official PGP User’s Guide. MIT Press, 1995.

38

https://doi.org/10.1007/978-3-319-96884-1_1
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-08.txt
https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-08.txt
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://www.signal.org/docs/
https://www.signal.org/docs/
https://doi.org/10.1007/978-3-030-57878-7_10

	Introduction
	Preliminaries and notation
	Cryptographic building blocks
	Key exchange protocol notation

	iMessage PQ3 Protocol description
	User registration
	Session start (initial key establishment)
	Asymmetric ratchet
	Symmetric ratchet
	Additional PQ3 components
	Message authentication
	The KDFRKCK function

	Security model
	Security experiment
	Freshness

	Security proof
	Overview of proof and main theorem
	Lemmas 1 and 2: Uniqueness of session identifiers
	lem:init-asym0: Initial key establishment for the initiator
	lem:resp-asym0: Initial key establishment for the responder
	Lemmas 5 and 6: Asymmetric ratchet
	Lemmas 7 and 8: Symmetric ratchet

	References

